theorem
ContinuousLinearMap.le_opNorm_of_le'
{π : Type u_8}
{πβ : Type u_9}
{E : Type u_10}
{F : Type u_11}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField π]
[NontriviallyNormedField πβ]
[NormedSpace π E]
[NormedSpace πβ F]
{Οββ : π β+* πβ}
[RingHomIsometric Οββ]
(f : E βSL[Οββ] F)
{x : E}
(hx : x β 0)
{C : β}
(h : C * βxβ β€ βf xβ)
:
@[simp]
theorem
ContinuousLinearMap.toSpanSingleton_zero
(π : Type u_8)
{E : Type u_9}
[SeminormedAddCommGroup E]
[NontriviallyNormedField π]
[NormedSpace π E]
:
@[simp]
theorem
ContinuousLinearMap.comp_toSpanSingleton_apply
{E : Type u_8}
[NormedAddCommGroup E]
[NormedSpace β E]
{F : Type u_9}
[NormedAddCommGroup F]
[NormedSpace β F]
(Ο : E βL[β] β)
(v : E)
(u : F)
:
def
LinearMap.coprodβ
(R : Type uβ)
(M : Type uβ)
(Mβ : Type uβ)
(Mβ : Type uβ)
[CommRing R]
[AddCommMonoid M]
[AddCommMonoid Mβ]
[AddCommMonoid Mβ]
[Module R M]
[Module R Mβ]
[Module R Mβ]
:
The natural linear map (M ββ[R] Mβ) Γ (Mβ ββ[R] Mβ) ββ[R] M Γ Mβ ββ[R] Mβ
for R
-modules M
,
Mβ
, Mβ
over a commutative ring R
.
If f : M ββ[R] Mβ
and g : Mβ ββ[R] Mβ
then linear_map.coprodβ (f, g)
is the map
(m, n) β¦ f m + g n
.
Equations
Instances For
theorem
isBoundedLinearMap_coprod
(π : Type u_8)
[NontriviallyNormedField π]
(E : Type u_9)
[NormedAddCommGroup E]
[NormedSpace π E]
(F : Type u_10)
[NormedAddCommGroup F]
[NormedSpace π F]
(G : Type u_11)
[NormedAddCommGroup G]
[NormedSpace π G]
:
def
ContinuousLinearMap.coprodL
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
:
The natural continuous linear map ((E βL[π] G) Γ (F βL[π] G)) βL[π] (E Γ F βL[π] G)
for
normed spaces E
, F
, G
over a normed field π
.
If gβ : E βL[π] G
and gβ : F βL[π] G
then continuous_linear_map.coprodL (gβ, gβ)
is the map
(e, f) β¦ gβ e + gβ f
.
Equations
Instances For
theorem
Continuous.coprodL
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
{X : Type u_7}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
[TopologicalSpace X]
{f : X β E βL[π] G}
{g : X β F βL[π] G}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : X) => (f x).coprod (g x)
theorem
Continuous.prodL'
{π : Type u_8}
{E : Type u_9}
{Fβ : Type u_10}
{Gβ : Type u_11}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup Fβ]
[SeminormedAddCommGroup Gβ]
[NontriviallyNormedField π]
[NormedSpace π E]
[NormedSpace π Fβ]
[NormedSpace π Gβ]
{X : Type u_12}
[TopologicalSpace X]
{f : X β E βL[π] Fβ}
{g : X β E βL[π] Gβ}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : X) => (f x).prod (g x)
theorem
Continuous.prodL
{π : Type u_8}
{E : Type u_9}
{Fβ : Type u_10}
{Gβ : Type u_11}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup Fβ]
[SeminormedAddCommGroup Gβ]
[NontriviallyNormedField π]
[NormedSpace π E]
[NormedSpace π Fβ]
[NormedSpace π Gβ]
{X : Type u_12}
[TopologicalSpace X]
{f : X β E βL[π] Fβ}
{g : X β E βL[π] Gβ}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : X) => (f x).prod (g x)
theorem
ContinuousAt.compL
{π : Type u_1}
{E : Type u_2}
{Fβ : Type u_5}
{Gβ : Type u_6}
{X : Type u_7}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedAddCommGroup Fβ]
[NormedAddCommGroup Gβ]
[NormedSpace π E]
[NormedSpace π Fβ]
[NormedSpace π Gβ]
[TopologicalSpace X]
{f : X β Fβ βL[π] Gβ}
{g : X β E βL[π] Fβ}
{xβ : X}
(hf : ContinuousAt f xβ)
(hg : ContinuousAt g xβ)
:
ContinuousAt (fun (x : X) => (f x).comp (g x)) xβ
theorem
Continuous.compL
{π : Type u_1}
{E : Type u_2}
{Fβ : Type u_5}
{Gβ : Type u_6}
{X : Type u_7}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedAddCommGroup Fβ]
[NormedAddCommGroup Gβ]
[NormedSpace π E]
[NormedSpace π Fβ]
[NormedSpace π Gβ]
[TopologicalSpace X]
{f : X β Fβ βL[π] Gβ}
{g : X β E βL[π] Fβ}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : X) => (f x).comp (g x)