Germs of smooth functions #
under construction: might need further refactoring to be usable!
theorem
SmoothMap.coe_prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{E' : Type u_3}
[NormedAddCommGroup E']
[NormedSpace π E']
{H : Type u_4}
[TopologicalSpace H]
{I : ModelWithCorners π E H}
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners π E' H'}
{N : Type u_6}
[TopologicalSpace N]
[ChartedSpace H N]
{G : Type u_10}
[CommMonoid G]
[TopologicalSpace G]
[ChartedSpace H' G]
[ContMDiffMul I' (ββ€) G]
{ΞΉ : Type u_11}
(f : ΞΉ β ContMDiffMap I I' N G ββ€)
(s : Finset ΞΉ)
:
theorem
SmoothMap.coe_sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{E' : Type u_3}
[NormedAddCommGroup E']
[NormedSpace π E']
{H : Type u_4}
[TopologicalSpace H]
{I : ModelWithCorners π E H}
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners π E' H'}
{N : Type u_6}
[TopologicalSpace N]
[ChartedSpace H N]
{G : Type u_10}
[AddCommMonoid G]
[TopologicalSpace G]
[ChartedSpace H' G]
[ContMDiffAdd I' (ββ€) G]
{ΞΉ : Type u_11}
(f : ΞΉ β ContMDiffMap I I' N G ββ€)
(s : Finset ΞΉ)
:
def
RingHom.germOfContMDiffMap
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
(x : N)
:
The map C^β(N, β) β Germ (π x) β
as a ring homomorphism.
Equations
Instances For
def
smoothGerm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
(x : N)
:
All germs of smooth functions N β β
at x : N
, as a subring of Germ (π x) β
.
Equations
- smoothGerm I x = (RingHom.germOfContMDiffMap I x).range
Instances For
instance
instCoeContMDiffMapRealModelWithCornersSelfSomeENatTopSubtypeGermNhdsMemSubringSmoothGerm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
(x : N)
:
Coe (ContMDiffMap I (modelWithCornersSelf β β) N β ββ€) β₯(smoothGerm I x)
Equations
- instCoeContMDiffMapRealModelWithCornersSelfSomeENatTopSubtypeGermNhdsMemSubringSmoothGerm I x = { coe := fun (f : ContMDiffMap I (modelWithCornersSelf β β) N β ββ€) => β¨ββf, β―β© }
@[simp]
theorem
smoothGerm.coe_coe
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
(f : ContMDiffMap I (modelWithCornersSelf β β) N β ββ€)
(x : N)
:
@[simp]
theorem
smoothGerm.coe_sum
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
{ΞΉ : Type u_11}
(f : ΞΉ β ContMDiffMap I (modelWithCornersSelf β β) N β ββ€)
(s : Finset ΞΉ)
(x : N)
:
@[simp]
theorem
smoothGerm.coe_eq_coe
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{N : Type u_5}
[TopologicalSpace N]
[ChartedSpace H N]
(f g : ContMDiffMap I (modelWithCornersSelf β β) N β ββ€)
{x : N}
(h : βαΆ (y : N) in nhds x, f y = g y)
:
def
smoothGerm.valueOrderRingHom
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
(x : N)
:
Equations
Instances For
def
smoothGerm.valueRingHom
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
(x : N)
:
Equations
Instances For
theorem
smoothGerm.valueOrderRingHom_toRingHom
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
(x : N)
:
def
Filter.Germ.valueββ
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
{F : Type u_9}
[AddCommMonoid F]
[Module β F]
(x : N)
:
Equations
- Filter.Germ.valueββ IG x = { toFun := Filter.Germ.value, map_add' := β―, map_smul' := β― }
Instances For
def
Filter.Germ.ContMDiffAt'
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
{x : M}
(Ο : (nhds x).Germ N)
(n : WithTop ββ)
:
Equations
- Filter.Germ.ContMDiffAt' I IG Ο n = Quotient.liftOn' Ο (fun (f : M β N) => ContMDiffAt I IG n f x) β―
Instances For
def
Filter.Germ.ContMDiffAt
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_5}
[NormedAddCommGroup F]
[NormedSpace β F]
{x : M}
(Ο : (nhds x).Germ F)
(n : WithTop ββ)
:
The predicate selecting germs of ContMDiffAt
functions.
TODO: merge with the next def that generalizes target space
Equations
- Filter.Germ.ContMDiffAt I Ο n = Filter.Germ.ContMDiffAt' I (modelWithCornersSelf β F) Ο n
Instances For
def
Filter.Germ.mfderiv
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners β E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{G : Type u_6}
[NormedAddCommGroup G]
[NormedSpace β G]
{HG : Type u_7}
[TopologicalSpace HG]
(IG : ModelWithCorners β G HG)
{N : Type u_8}
[TopologicalSpace N]
[ChartedSpace HG N]
{x : M}
(Ο : (nhds x).Germ N)
:
Equations
- Filter.Germ.mfderiv I IG Ο = Quotient.hrecOn Ο (fun (f : M β N) => mfderiv I IG f x) β―
Instances For
theorem
smoothGerm.contMDiffAt
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners β E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
(Ο : β₯(smoothGerm I x))
{n : ββ}
:
Filter.Germ.ContMDiffAt I βΟ βn
theorem
Filter.Germ.ContMDiffAt.add
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners β E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_5}
[NormedAddCommGroup F]
[NormedSpace β F]
{x : M}
{Ο Ο : (nhds x).Germ F}
{n : ββ}
:
Germ.ContMDiffAt I Ο βn β Germ.ContMDiffAt I Ο βn β Germ.ContMDiffAt I (Ο + Ο) βn
theorem
Filter.Germ.ContMDiffAt.smul
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners β E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_5}
[NormedAddCommGroup F]
[NormedSpace β F]
{x : M}
{Ο : (nhds x).Germ β}
{Ο : (nhds x).Germ F}
{n : ββ}
:
Germ.ContMDiffAt I Ο βn β Germ.ContMDiffAt I Ο βn β Germ.ContMDiffAt I (Ο β’ Ο) βn
theorem
Filter.Germ.ContMDiffAt.sum
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace β E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners β E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{F : Type u_5}
[NormedAddCommGroup F]
[NormedSpace β F]
{x : M}
{ΞΉ : Type u_9}
{s : Finset ΞΉ}
{n : ββ}
{f : ΞΉ β (nhds x).Germ F}
(h : β i β s, Germ.ContMDiffAt I (f i) βn)
:
Germ.ContMDiffAt I (β i β s, f i) βn
def
Filter.Germ.ContMDiffAtProd
{Eβ : Type u_1}
{Eβ : Type u_2}
{F : Type u_3}
{Hβ : Type u_4}
{Mβ : Type u_5}
{Hβ : Type u_6}
{Mβ : Type u_7}
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup F]
[NormedSpace β F]
[TopologicalSpace Hβ]
(Iβ : ModelWithCorners β Eβ Hβ)
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
[TopologicalSpace Hβ]
(Iβ : ModelWithCorners β Eβ Hβ)
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
{x : Mβ}
(Ο : (nhds x).Germ (Mβ β F))
(n : ββ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Filter.Germ.ContMDiffAtProd.add
{Eβ : Type u_1}
{Eβ : Type u_2}
{F : Type u_3}
{Hβ : Type u_4}
{Mβ : Type u_5}
{Hβ : Type u_6}
{Mβ : Type u_7}
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup F]
[NormedSpace β F]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
{x : Mβ}
{Ο Ο : (nhds x).Germ (Mβ β F)}
{n : ββ}
:
ContMDiffAtProd Iβ Iβ Ο n β ContMDiffAtProd Iβ Iβ Ο n β ContMDiffAtProd Iβ Iβ (Ο + Ο) n
theorem
Filter.Germ.ContMDiffAtProd.smul
{Eβ : Type u_1}
{Eβ : Type u_2}
{F : Type u_3}
{Hβ : Type u_4}
{Mβ : Type u_5}
{Hβ : Type u_6}
{Mβ : Type u_7}
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup F]
[NormedSpace β F]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
{x : Mβ}
{Ο : (nhds x).Germ (Mβ β β)}
{Ο : (nhds x).Germ (Mβ β F)}
{n : ββ}
:
ContMDiffAtProd Iβ Iβ Ο n β ContMDiffAtProd Iβ Iβ Ο n β ContMDiffAtProd Iβ Iβ (Ο β’ Ο) n
theorem
Filter.Germ.ContMDiffAt.smul_prod
{Eβ : Type u_1}
{Eβ : Type u_2}
{F : Type u_3}
{Hβ : Type u_4}
{Mβ : Type u_5}
{Hβ : Type u_6}
{Mβ : Type u_7}
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup F]
[NormedSpace β F]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
{x : Mβ}
{Ο : (nhds x).Germ β}
{Ο : (nhds x).Germ (Mβ β F)}
{n : ββ}
:
Germ.ContMDiffAt Iβ Ο βn β ContMDiffAtProd Iβ Iβ Ο n β ContMDiffAtProd Iβ Iβ (Ο β’ Ο) n
theorem
Filter.Germ.ContMDiffAtProd.sum
{Eβ : Type u_1}
{Eβ : Type u_2}
{F : Type u_3}
{Hβ : Type u_4}
{Mβ : Type u_5}
{Hβ : Type u_6}
{Mβ : Type u_7}
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup Eβ]
[NormedSpace β Eβ]
[NormedAddCommGroup F]
[NormedSpace β F]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
[TopologicalSpace Hβ]
{Iβ : ModelWithCorners β Eβ Hβ}
[TopologicalSpace Mβ]
[ChartedSpace Hβ Mβ]
{x : Mβ}
{ΞΉ : Type u_8}
{s : Finset ΞΉ}
{n : ββ}
{f : ΞΉ β (nhds x).Germ (Mβ β F)}
(h : β i β s, ContMDiffAtProd Iβ Iβ (f i) n)
:
ContMDiffAtProd Iβ Iβ (β i β s, f i) n