Documentation

SphereEversion.ToMathlib.Geometry.Manifold.IsManifold.ExtChartAt

def ChartedSpace.ball {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (x : M) (r : ) :
Set M

If M is a ChartedSpace we can use the preferred chart at any point to transfer a ball in coordinate space into a set in M. These can be a useful neighbourhood basis.

Equations
Instances For
    theorem ChartedSpace.nhds_hasBasis_balls_of_open_cov {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] (x : M) {ι : Type u_5} {s : ιSet M} (s_op : ∀ (j : ι), IsOpen (s j)) (cov : ⋃ (j : ι), s j = Set.univ) :
    (nhds x).HasBasis (fun (r : ) => 0 < r Metric.ball ((extChartAt I x) x) r (extChartAt I x).target ∃ (j : ι), ball I x r s j) (ball I x)