Documentation

SphereEversion.ToMathlib.LinearAlgebra.Basic

Note: some results should go to LinearAlgebra.Span.

theorem Submodule.sup_eq_span_union {R : Type u_1} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (s t : Submodule R M) :
s t = span R (s t)
theorem Submodule.sup_eq_top_iff {R : Type u_1} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (s t : Submodule R M) :
s t = ∀ (m : M), us, vt, m = u + v
theorem LinearMap.injective_iff_of_direct_sum {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [AddCommGroup M₂] {σ₁₂ : R →+* R₂} [Module R M] [Module R₂ M₂] {p q : Submodule R M} [RingHomSurjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (hpq : p q = ) (hpq' : p q = ) :
theorem LinearMap.ker_inf_eq_bot {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} {f : M →ₛₗ[τ₁₂] M₂} {S : Submodule R M} :
ker f S = Set.InjOn f S