Documentation

SphereEversion.ToMathlib.SmoothBarycentric

def affineBases (ι : Type u_1) (R : Type u_2) (P : Type u_4) {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] [AddTorsor M P] :
Set (ιP)

The set of affine bases for an affine space.

Equations
Instances For
    theorem affineBases_findim (ι : Type u_1) (k : Type u_3) (P : Type u_4) {M : Type u_5} [AddCommGroup M] [AddTorsor M P] [Fintype ι] [Field k] [Module k M] [FiniteDimensional k M] (h : Fintype.card ι = Module.finrank k M + 1) :
    affineBases ι k P = {v : ιP | AffineIndependent k v}
    theorem mem_affineBases_iff (ι : Type u_1) (R : Type u_2) (P : Type u_4) {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] [AddTorsor M P] [Fintype ι] [DecidableEq ι] [Nontrivial R] (b : AffineBasis ι R P) (v : ιP) :
    def evalBarycentricCoords (ι : Type u_1) (R : Type u_2) (P : Type u_4) {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] [AddTorsor M P] [DecidablePred fun (x : ιP) => x affineBases ι R P] (p : P) (v : ιP) :
    ιR

    If P is an affine space over the ring R, v : ι → P is an affine basis (for some indexing set ι) and p : P is a point, then eval_barycentric_coords ι R P p v are the barycentric coordinates of p with respect to the affine basis v.

    Actually for convenience eval_barycentric_coords is defined even when v is not an affine basis. In this case its value should be regarded as "junk".

    Equations
    Instances For
      @[simp]
      theorem evalBarycentricCoords_apply_of_mem_bases (ι : Type u_1) (R : Type u_2) (P : Type u_4) {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] [AddTorsor M P] [DecidablePred fun (x : ιP) => x affineBases ι R P] (p : P) {v : ιP} (h : v affineBases ι R P) :
      evalBarycentricCoords ι R P p v = { toFun := v, ind' := , tot' := }.coords p
      @[simp]
      theorem evalBarycentricCoords_apply_of_not_mem_bases (ι : Type u_1) (R : Type u_2) (P : Type u_4) {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] [AddTorsor M P] [DecidablePred fun (x : ιP) => x affineBases ι R P] (p : P) {v : ιP} (h : vaffineBases ι R P) :
      theorem evalBarycentricCoords_eq_det {ι : Type u_1} {P : Type u_4} {M : Type u_5} [AddCommGroup M] [AddTorsor M P] [Fintype ι] [DecidableEq ι] (S : Type u_6) [Field S] [Module S M] [(v : ιP) → Decidable (v affineBases ι S P)] (b : AffineBasis ι S P) (p : P) (v : ιP) :
      theorem smooth_barycentric (ι : Type u_1) (𝕜 : Type u_2) (F : Type u_3) [Fintype ι] [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [DecidablePred fun (x : ιF) => x affineBases ι 𝕜 F] [FiniteDimensional 𝕜 F] (h : Fintype.card ι = Module.finrank 𝕜 F + 1) {n : WithTop ℕ∞} :