theorem
ContinuousLinearMap.fst_prod_zero_add_zero_prod_snd
{R₁ : Type u_1}
{M₁ : Type u_2}
{M₂ : Type u_3}
[Semiring R₁]
[TopologicalSpace M₁]
[AddCommMonoid M₁]
[TopologicalSpace M₂]
[AddCommMonoid M₂]
[Module R₁ M₁]
[Module R₁ M₂]
[ContinuousAdd M₁]
[ContinuousAdd M₂]
:
theorem
Function.Surjective.clm_comp_injective
{R₁ : Type u_1}
{R₂ : Type u_2}
{R₃ : Type u_3}
[Semiring R₁]
[Semiring R₂]
[Semiring R₃]
{σ₁₂ : R₁ →+* R₂}
{σ₂₃ : R₂ →+* R₃}
{σ₁₃ : R₁ →+* R₃}
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
{M₁ : Type u_4}
[TopologicalSpace M₁]
[AddCommMonoid M₁]
{M₂ : Type u_6}
[TopologicalSpace M₂]
[AddCommMonoid M₂]
{M₃ : Type u_7}
[TopologicalSpace M₃]
[AddCommMonoid M₃]
[Module R₁ M₁]
[Module R₂ M₂]
[Module R₃ M₃]
{g : M₁ →SL[σ₁₂] M₂}
(hg : Surjective ⇑g)
:
theorem
ContinuousLinearEquiv.cancel_right
{R₁ : Type u_1}
{R₂ : Type u_2}
{R₃ : Type u_3}
[Semiring R₁]
[Semiring R₂]
[Semiring R₃]
{σ₁₂ : R₁ →+* R₂}
{σ₂₁ : R₂ →+* R₁}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₁ σ₁₂]
{σ₂₃ : R₂ →+* R₃}
{σ₁₃ : R₁ →+* R₃}
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
{M₁ : Type u_4}
[TopologicalSpace M₁]
[AddCommMonoid M₁]
{M₂ : Type u_6}
[TopologicalSpace M₂]
[AddCommMonoid M₂]
{M₃ : Type u_7}
[TopologicalSpace M₃]
[AddCommMonoid M₃]
[Module R₁ M₁]
[Module R₂ M₂]
[Module R₃ M₃]
{f f' : M₂ →SL[σ₂₃] M₃}
{e : M₁ ≃SL[σ₁₂] M₂}
:
theorem
ContinuousLinearEquiv.cancel_left
{R₁ : Type u_1}
{R₂ : Type u_2}
{R₃ : Type u_3}
[Semiring R₁]
[Semiring R₂]
[Semiring R₃]
{σ₁₂ : R₁ →+* R₂}
{σ₂₃ : R₂ →+* R₃}
{σ₃₂ : R₃ →+* R₂}
[RingHomInvPair σ₂₃ σ₃₂]
[RingHomInvPair σ₃₂ σ₂₃]
{σ₁₃ : R₁ →+* R₃}
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
{M₁ : Type u_4}
[TopologicalSpace M₁]
[AddCommMonoid M₁]
{M₂ : Type u_6}
[TopologicalSpace M₂]
[AddCommMonoid M₂]
{M₃ : Type u_7}
[TopologicalSpace M₃]
[AddCommMonoid M₃]
[Module R₁ M₁]
[Module R₂ M₂]
[Module R₃ M₃]
{e : M₂ ≃SL[σ₂₃] M₃}
{f f' : M₁ →SL[σ₁₂] M₂}
: