Documentation

SphereEversion.ToMathlib.Topology.Algebra.Module

theorem ContinuousLinearMap.fst_prod_zero_add_zero_prod_snd {R₁ : Type u_1} {M₁ : Type u_2} {M₂ : Type u_3} [Semiring R₁] [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace M₂] [AddCommMonoid M₂] [Module R₁ M₁] [Module R₁ M₂] [ContinuousAdd M₁] [ContinuousAdd M₂] :
(fst R₁ M₁ M₂).prod 0 + ContinuousLinearMap.prod 0 (snd R₁ M₁ M₂) = id R₁ (M₁ × M₂)
theorem Function.Surjective.clm_comp_injective {R₁ : Type u_1} {R₂ : Type u_2} {R₃ : Type u_3} [Semiring R₁] [Semiring R₂] [Semiring R₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {M₁ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] {M₂ : Type u_6} [TopologicalSpace M₂] [AddCommMonoid M₂] {M₃ : Type u_7} [TopologicalSpace M₃] [AddCommMonoid M₃] [Module R₁ M₁] [Module R₂ M₂] [Module R₃ M₃] {g : M₁ →SL[σ₁₂] M₂} (hg : Surjective g) :
Injective fun (f : M₂ →SL[σ₂₃] M₃) => f.comp g
theorem ContinuousLinearEquiv.cancel_right {R₁ : Type u_1} {R₂ : Type u_2} {R₃ : Type u_3} [Semiring R₁] [Semiring R₂] [Semiring R₃] {σ₁₂ : R₁ →+* R₂} {σ₂₁ : R₂ →+* R₁} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {M₁ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] {M₂ : Type u_6} [TopologicalSpace M₂] [AddCommMonoid M₂] {M₃ : Type u_7} [TopologicalSpace M₃] [AddCommMonoid M₃] [Module R₁ M₁] [Module R₂ M₂] [Module R₃ M₃] {f f' : M₂ →SL[σ₂₃] M₃} {e : M₁ ≃SL[σ₁₂] M₂} :
f.comp e = f'.comp e f = f'
theorem ContinuousLinearEquiv.cancel_left {R₁ : Type u_1} {R₂ : Type u_2} {R₃ : Type u_3} [Semiring R₁] [Semiring R₂] [Semiring R₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₃₂ : R₃ →+* R₂} [RingHomInvPair σ₂₃ σ₃₂] [RingHomInvPair σ₃₂ σ₂₃] {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {M₁ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] {M₂ : Type u_6} [TopologicalSpace M₂] [AddCommMonoid M₂] {M₃ : Type u_7} [TopologicalSpace M₃] [AddCommMonoid M₃] [Module R₁ M₁] [Module R₂ M₂] [Module R₃ M₃] {e : M₂ ≃SL[σ₂₃] M₃} {f f' : M₁ →SL[σ₁₂] M₂} :
(↑e).comp f = (↑e).comp f' f = f'