theorem
Function.LeftInverse.mem_preimage_iff
{α : Type u_1}
{β : Type u_2}
{f : α → β}
{g : β → α}
(hfg : LeftInverse g f)
{s : Set α}
{x : α}
:
theorem
Function.LeftInverse.isOpenMap
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
{f : α → β}
{g : β → α}
(hfg : LeftInverse g f)
(hf : IsOpen (Set.range f))
(hg : ContinuousOn g (Set.range f))
:
theorem
hasCompactMulSupport_of_subset
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[T2Space α]
[One β]
{f : α → β}
{K : Set α}
(hK : IsCompact K)
(hf : Function.mulSupport f ⊆ K)
:
theorem
hasCompactSupport_of_subset
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[T2Space α]
[Zero β]
{f : α → β}
{K : Set α}
(hK : IsCompact K)
(hf : Function.support f ⊆ K)
:
theorem
periodic_const
{α : Type u_1}
{β : Type u_2}
[Add α]
{a : α}
{b : β}
:
Function.Periodic (fun (x : α) => b) a
The standard ℤ action on ℝ is properly discontinuous #
TODO: use that in ToMathlib.Algebra.Periodic?
Equations
- instVAddIntReal_sphereEversion = { vadd := fun (n : ℤ) (x : ℝ) => ↑n + x }
If α
is a LinearOrderedSemiring
, then projI : α → α
projection of α
onto the unit
interval [0, 1]
.
Equations
- projI x = ↑(Set.projIcc 0 1 ⋯ x)
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
strictMonoOn_projI
{α : Type u_1}
[LinearOrderedSemiring α]
:
StrictMonoOn projI (Set.Icc 0 1)
@[simp]
theorem
continuous_projI
{α : Type u_1}
[LinearOrderedSemiring α]
[TopologicalSpace α]
[OrderTopology α]
:
theorem
projI_mapsto
{α : Type u_3}
[LinearOrderedSemiring α]
{s : Set α}
(h0s : 0 ∈ s)
(h1s : 1 ∈ s)
:
Set.MapsTo projI s s
theorem
truncate_projI_right
{X : Type u_3}
[TopologicalSpace X]
{a b : X}
(γ : Path a b)
(t₀ t₁ : ℝ)
(s : ↑unitInterval)
:
theorem
decode₂_locallyFinite
{α : Type u_1}
[TopologicalSpace α]
{ι : Type u_1}
[Encodable ι]
{s : ι → Set α}
(hs : LocallyFinite s)
:
LocallyFinite fun (i : ℕ) => (s <$> Encodable.decode₂ ι i).getD ∅
Given a locally finite sequence of sets indexed by an encodable type, we can naturally reindex
this sequence to get a sequence indexed by ℕ
(by adding some ∅
values).
This new sequence is still locally finite.
theorem
exists_locallyFinite_subcover_of_locally
{X : Type u_4}
[EMetricSpace X]
[LocallyCompactSpace X]
[SecondCountableTopology X]
{C : Set X}
(hC : IsClosed C)
{P : Set X → Prop}
(hP : Antitone P)
(h0 : P ∅)
(hX : ∀ x ∈ C, ∃ V ∈ nhds x, P V)
:
theorem
IsCompact.eventually_forall_mem
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[TopologicalSpace α]
[TopologicalSpace β]
[TopologicalSpace γ]
{x₀ : α}
{K : Set β}
(hK : IsCompact K)
{f : α → β → γ}
(hf : Continuous ↿f)
{U : Set γ}
(hU : ∀ y ∈ K, U ∈ nhds (f x₀ y))
:
theorem
Continuous.infDist
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[PseudoMetricSpace β]
{s : Set β}
{f : α → β}
(hf : Continuous f)
:
Continuous fun (x : α) => Metric.infDist (f x) s
theorem
isPreconnected_ball
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
(r : ℝ)
:
IsPreconnected (Metric.ball x r)
theorem
TopologicalSpace.cover_nat_nhdsWithin
{α : Type u_1}
[TopologicalSpace α]
[SecondCountableTopology α]
{f : α → Set α}
{s : Set α}
(hf : ∀ x ∈ s, f x ∈ nhdsWithin x s)
(hs : s.Nonempty)
:
theorem
TopologicalSpace.cover_nat_nhdsWithin'
{α : Type u_1}
[TopologicalSpace α]
[SecondCountableTopology α]
{s : Set α}
{f : (x : α) → x ∈ s → Set α}
(hf : ∀ (x : α) (hx : x ∈ s), f x hx ∈ nhdsWithin x s)
(hs : s.Nonempty)
:
A version of TopologicalSpace.cover_nat_nhdsWithin
where f
is only defined on s
.
theorem
precise_refinement_set'
{ι : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
{s : Set X}
[ParacompactSpace ↑s]
(hs : IsOpen s)
(u : ι → Set X)
(uo : ∀ (i : ι), IsOpen (u i))
(us : s ⊆ ⋃ (i : ι), u i)
:
When s : Set X
is open and paracompact, we can find a precise refinement on s
. Note that
in this case we only get the locally finiteness condition on s
, which is weaker than the local
finiteness condition on all of X
(the collection might not be locally finite on the boundary of
s
).
theorem
point_finite_of_locallyFinite_coe_preimage
{ι : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
{s : Set X}
{f : ι → Set X}
(hf : LocallyFinite fun (i : ι) => Subtype.val ⁻¹' f i)
(hfs : ∀ (i : ι), f i ⊆ s)
{x : X}
:
theorem
exists_subset_iUnion_interior_of_isOpen
{ι : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
{u : ι → Set X}
{s : Set X}
[NormalSpace ↑s]
(hs : IsOpen s)
(uo : ∀ (i : ι), IsOpen (u i))
(uc : ∀ (i : ι), IsCompact (closure (u i)))
(us : ∀ (i : ι), closure (u i) ⊆ s)
(uf : ∀ x ∈ s, {i : ι | x ∈ u i}.Finite)
(uU : s ⊆ ⋃ (i : ι), u i)
: