Documentation

SphereEversion.ToMathlib.Topology.Misc

theorem Function.LeftInverse.mem_preimage_iff {α : Type u_1} {β : Type u_2} {f : αβ} {g : βα} (hfg : LeftInverse g f) {s : Set α} {x : α} :
f x g ⁻¹' s x s
theorem Function.LeftInverse.image_eq {α : Type u_1} {β : Type u_2} {f : αβ} {g : βα} (hfg : LeftInverse g f) (s : Set α) :
f '' s = Set.range f g ⁻¹' s
theorem Function.LeftInverse.isOpenMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {g : βα} (hfg : LeftInverse g f) (hf : IsOpen (Set.range f)) (hg : ContinuousOn g (Set.range f)) :
theorem Filter.Eventually.closed_neighborhood {α : Type u_1} [TopologicalSpace α] [NormalSpace α] {C : Set α} {P : αProp} (hP : ∀ᶠ (x : α) in nhdsSet C, P x) (hC : IsClosed C) :
C'nhdsSet C, IsClosed C' ∀ᶠ (x : α) in nhdsSet C', P x
theorem support_norm {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] (f : αE) :
(Function.support fun (a : α) => f a) = Function.support f
theorem hasCompactMulSupport_of_subset {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [T2Space α] [One β] {f : αβ} {K : Set α} (hK : IsCompact K) (hf : Function.mulSupport f K) :
theorem hasCompactSupport_of_subset {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [T2Space α] [Zero β] {f : αβ} {K : Set α} (hK : IsCompact K) (hf : Function.support f K) :
theorem periodic_const {α : Type u_1} {β : Type u_2} [Add α] {a : α} {b : β} :
Function.Periodic (fun (x : α) => b) a

The standard ℤ action on ℝ is properly discontinuous #

TODO: use that in ToMathlib.Algebra.Periodic?

Equations
theorem floor_eq_self_iff {x : } :
x = x ∃ (n : ), x = n
theorem fract_eq_zero_iff {x : } :
Int.fract x = 0 ∃ (n : ), x = n
theorem fract_ne_zero_iff {x : } :
Int.fract x 0 ∀ (n : ), x n
theorem Ioo_floor_mem_nhds {x : } (h : ∀ (n : ), x n) :
Set.Ioo (↑x) (x + 1) nhds x
theorem loc_constant_floor {x : } (h : ∀ (n : ), x n) :
Int.floor =ᶠ[nhds x] fun (x_1 : ) => x
theorem fract_eventuallyEq {x : } (h : Int.fract x 0) :
Int.fract =ᶠ[nhds x] fun (x' : ) => x' - x
theorem Ioo_inter_Iio {α : Type u_1} [LinearOrder α] {a b c : α} :
Set.Ioo a b Set.Iio c = Set.Ioo a (b c)
theorem fract_lt {x y : } {n : } (h1 : n x) (h2 : x < n + y) :
theorem one_sub_lt_fract {x y : } {n : } (hy : y 1) (h1 : n - y < x) (h2 : x < n) :
1 - y < Int.fract x
theorem IsOpen.preimage_fract' {s : Set } (hs : IsOpen s) (h2s : 0 ss nhdsWithin 1 (Set.Iio 1)) :
theorem IsOpen.preimage_fract {s : Set } (hs : IsOpen s) (h2s : 0 s1 s) :
theorem IsClosed.preimage_fract {s : Set } (hs : IsClosed s) (h2s : snhdsWithin 1 (Set.Iio 1)0 s) :
theorem fract_preimage_mem_nhds {s : Set } {x : } (h1 : s nhds (Int.fract x)) (h2 : Int.fract x = 0s nhds 1) :
theorem isOpen_slice_of_isOpen_over {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {Ω : Set (α × β)} {x₀ : α} (hΩ_op : Unhds x₀, IsOpen (Ω Prod.fst ⁻¹' U)) :
def projI {α : Type u_1} [LinearOrderedSemiring α] :
αα

If α is a LinearOrderedSemiring, then projI : α → α projection of α onto the unit interval [0, 1].

Equations
Instances For
    theorem projI_def {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x = 0 1 x
    theorem projIcc_eq_projI {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    (Set.projIcc 0 1 x) = projI x
    theorem projI_of_le_zero {α : Type u_1} [LinearOrderedSemiring α] {x : α} (hx : x 0) :
    projI x = 0
    @[simp]
    theorem projI_zero {α : Type u_1} [LinearOrderedSemiring α] :
    projI 0 = 0
    theorem projI_of_one_le {α : Type u_1} [LinearOrderedSemiring α] {x : α} (hx : 1 x) :
    projI x = 1
    @[simp]
    theorem projI_one {α : Type u_1} [LinearOrderedSemiring α] :
    projI 1 = 1
    @[simp]
    theorem projI_eq_zero {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x = 0 x 0
    @[simp]
    theorem projI_eq_one {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x = 1 1 x
    theorem projI_mem_Icc {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    theorem projI_eq_self {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x = x x Set.Icc 0 1
    @[simp]
    theorem projI_projI {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    @[simp]
    theorem projIcc_projI {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    Set.projIcc 0 1 (projI x) = Set.projIcc 0 1 x
    theorem projI_le_max {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x 0 x
    theorem min_le_projI {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    1 x projI x
    theorem projI_le_iff {α : Type u_1} [LinearOrderedSemiring α] {x c : α} :
    projI x c 0 c (1 c x c)
    @[simp]
    theorem projI_eq_min {α : Type u_1} [LinearOrderedSemiring α] {x : α} :
    projI x = 1 x 0 x
    theorem min_projI {α : Type u_1} [LinearOrderedSemiring α] {x c : α} (h2 : 0 c) :
    c projI x = projI (c x)
    theorem projI_mapsto {α : Type u_3} [LinearOrderedSemiring α] {s : Set α} (h0s : 0 s) (h1s : 1 s) :
    theorem truncate_projI_right {X : Type u_3} [TopologicalSpace X] {a b : X} (γ : Path a b) (t₀ t₁ : ) (s : unitInterval) :
    (γ.truncate t₀ (projI t₁)) s = (γ.truncate t₀ t₁) s
    theorem decode₂_locallyFinite {α : Type u_1} [TopologicalSpace α] {ι : Type u_1} [Encodable ι] {s : ιSet α} (hs : LocallyFinite s) :

    Given a locally finite sequence of sets indexed by an encodable type, we can naturally reindex this sequence to get a sequence indexed by (by adding some values). This new sequence is still locally finite.

    theorem exists_locallyFinite_subcover_of_locally {X : Type u_4} [EMetricSpace X] [LocallyCompactSpace X] [SecondCountableTopology X] {C : Set X} (hC : IsClosed C) {P : Set XProp} (hP : Antitone P) (h0 : P ) (hX : xC, Vnhds x, P V) :
    ∃ (K : Set X) (W : Set X), (∀ (n : ), IsCompact (K n)) (∀ (n : ), IsOpen (W n)) (∀ (n : ), P (W n)) (∀ (n : ), K n W n) LocallyFinite W C ⋃ (n : ), K n
    theorem IsCompact.eventually_forall_mem {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {x₀ : α} {K : Set β} (hK : IsCompact K) {f : αβγ} (hf : Continuous f) {U : Set γ} (hU : yK, U nhds (f x₀ y)) :
    ∀ᶠ (x : α) in nhds x₀, yK, f x y U
    theorem Continuous.infDist {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [PseudoMetricSpace β] {s : Set β} {f : αβ} (hf : Continuous f) :
    Continuous fun (x : α) => Metric.infDist (f x) s
    theorem isConnected_ball {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} {r : } :
    theorem TopologicalSpace.cover_nat_nhdsWithin {α : Type u_1} [TopologicalSpace α] [SecondCountableTopology α] {f : αSet α} {s : Set α} (hf : xs, f x nhdsWithin x s) (hs : s.Nonempty) :
    ∃ (x : α), Set.range x s s ⋃ (n : ), f (x n)
    theorem TopologicalSpace.cover_nat_nhdsWithin' {α : Type u_1} [TopologicalSpace α] [SecondCountableTopology α] {s : Set α} {f : (x : α) → x sSet α} (hf : ∀ (x : α) (hx : x s), f x hx nhdsWithin x s) (hs : s.Nonempty) :
    ∃ (x : α) (hx : Set.range x s), s ⋃ (n : ), f (x n)

    A version of TopologicalSpace.cover_nat_nhdsWithin where f is only defined on s.

    theorem Set.Subtype.image_coe_eq_iff_eq_univ {α : Type u_1} {s : Set α} {t : Set s} :
    theorem precise_refinement_set' {ι : Type u_1} {X : Type u_2} [TopologicalSpace X] {s : Set X} [ParacompactSpace s] (hs : IsOpen s) (u : ιSet X) (uo : ∀ (i : ι), IsOpen (u i)) (us : s ⋃ (i : ι), u i) :
    ∃ (v : ιSet X), (∀ (i : ι), IsOpen (v i)) s ⋃ (i : ι), v i (LocallyFinite fun (i : ι) => Subtype.val ⁻¹' v i) (∀ (i : ι), v i s) ∀ (i : ι), v i u i

    When s : Set X is open and paracompact, we can find a precise refinement on s. Note that in this case we only get the locally finiteness condition on s, which is weaker than the local finiteness condition on all of X (the collection might not be locally finite on the boundary of s).

    theorem point_finite_of_locallyFinite_coe_preimage {ι : Type u_1} {X : Type u_2} [TopologicalSpace X] {s : Set X} {f : ιSet X} (hf : LocallyFinite fun (i : ι) => Subtype.val ⁻¹' f i) (hfs : ∀ (i : ι), f i s) {x : X} :
    {i : ι | x f i}.Finite
    theorem exists_subset_iUnion_interior_of_isOpen {ι : Type u_1} {X : Type u_2} [TopologicalSpace X] {u : ιSet X} {s : Set X} [NormalSpace s] (hs : IsOpen s) (uo : ∀ (i : ι), IsOpen (u i)) (uc : ∀ (i : ι), IsCompact (closure (u i))) (us : ∀ (i : ι), closure (u i) s) (uf : xs, {i : ι | x u i}.Finite) (uU : s ⋃ (i : ι), u i) :
    ∃ (v : ιSet X), s ⋃ (i : ι), interior (v i) (∀ (i : ι), IsCompact (v i)) ∀ (i : ι), v i u i
    theorem Filter.EventuallyEq.slice {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f g : α × βγ} {a : α} {b : β} (h : f =ᶠ[nhds (a, b)] g) :
    (fun (y : β) => f (a, y)) =ᶠ[nhds b] fun (y : β) => g (a, y)
    theorem exists_compact_between' {α : Type u_1} [TopologicalSpace α] [LocallyCompactSpace α] {K U : Set α} (hK : IsCompact K) (hU : IsOpen U) (h_KU : K U) :
    ∃ (L : Set α), IsCompact L L nhdsSet K L U