Documentation

SphereEversion.ToMathlib.Topology.Path

@[simp]
theorem Path.extend_div_self {X : Type u_1} [TopologicalSpace X] {x : X} (γ : Path x x) (t : ) :
γ.extend (t / t) = x

A loop evaluated at t / t is equal to its endpoint. Note that t / t = 0 for t = 0.

def Path.strans {X : Type u_1} [TopologicalSpace X] {x : X} (γ γ' : Path x x) (t₀ : unitInterval) :
Path x x

Concatenation of two loops which moves through the first loop on [0, t₀] and through the second one on [t₀, 1]. All endpoints are assumed to be the same so that this function is also well-defined for t₀ ∈ {0, 1}. strans stands either for a skewed transitivity, or a transitivity with different speeds.

Equations
Instances For
    theorem Path.strans_def {X : Type u_1} [TopologicalSpace X] {x : X} {t₀ t : unitInterval} (γ γ' : Path x x) :
    (γ.strans γ' t₀) t = if h : t t₀ then γ t / t₀, else γ' ⟨(t - t₀) / (1 - t₀),

    Reformulate strans without using extend. This is useful to not have to prove that the arguments to γ lie in I after this.

    @[simp]
    theorem Path.strans_of_ge {X : Type u_1} [TopologicalSpace X] {x : X} {γ γ' : Path x x} {t t₀ : unitInterval} (h : t₀ t) :
    (γ.strans γ' t₀) t = γ'.extend ((t - t₀) / (1 - t₀))
    @[simp]
    theorem Path.strans_zero {X : Type u_1} [TopologicalSpace X] {x : X} (γ γ' : Path x x) :
    γ.strans γ' 0 = γ'
    @[simp]
    theorem Path.strans_one {X : Type u_1} [TopologicalSpace X] {x : X} (γ γ' : Path x x) :
    γ.strans γ' 1 = γ
    theorem Path.strans_self {X : Type u_1} [TopologicalSpace X] {x : X} (γ γ' : Path x x) (t₀ : unitInterval) :
    (γ.strans γ' t₀) t₀ = x
    @[simp]
    theorem Path.refl_strans_refl {X : Type u_1} [TopologicalSpace X] {x : X} {t₀ : unitInterval} :
    (refl x).strans (refl x) t₀ = refl x
    theorem Path.subset_range_strans_left {X : Type u_1} [TopologicalSpace X] {x : X} {γ γ' : Path x x} {t₀ : unitInterval} (h : t₀ 0) :
    Set.range γ Set.range (γ.strans γ' t₀)
    theorem Path.subset_range_strans_right {X : Type u_1} [TopologicalSpace X] {x : X} {γ γ' : Path x x} {t₀ : unitInterval} (h : t₀ 1) :
    Set.range γ' Set.range (γ.strans γ' t₀)
    theorem Path.range_strans_subset {X : Type u_1} [TopologicalSpace X] {x : X} {γ γ' : Path x x} {t₀ : unitInterval} :
    Set.range (γ.strans γ' t₀) Set.range γ Set.range γ'
    theorem Path.Continuous.path_strans {X : Type u_5} {Y : Type u_6} [UniformSpace X] [LocallyCompactSpace X] [UniformSpace Y] {f : XY} {t s : XunitInterval} {γ γ' : (x : X) → Path (f x) (f x)} ( : Continuous γ) (hγ' : Continuous γ') (hγ0 : ∀ ⦃x : X⦄ ⦃s : unitInterval⦄, t x = 0(γ x) s = f x) (hγ'1 : ∀ ⦃x : X⦄ ⦃s : unitInterval⦄, t x = 1(γ' x) s = f x) (ht : Continuous t) (hs : Continuous s) :
    Continuous fun (x : X) => ((γ x).strans (γ' x) (t x)) (s x)