@[simp]
A loop evaluated at t / t
is equal to its endpoint. Note that t / t = 0
for t = 0
.
def
Path.strans
{X : Type u_1}
[TopologicalSpace X]
{x : X}
(γ γ' : Path x x)
(t₀ : ↑unitInterval)
:
Path x x
Concatenation of two loops which moves through the first loop on [0, t₀]
and
through the second one on [t₀, 1]
. All endpoints are assumed to be the same so that this
function is also well-defined for t₀ ∈ {0, 1}
.
strans
stands either for a skewed transitivity, or a transitivity with different speeds.
Equations
Instances For
theorem
Path.strans_def
{X : Type u_1}
[TopologicalSpace X]
{x : X}
{t₀ t : ↑unitInterval}
(γ γ' : Path x x)
:
Reformulate strans
without using extend
. This is useful to not have to prove that the
arguments to γ
lie in I
after this.
@[simp]
theorem
Path.strans_of_ge
{X : Type u_1}
[TopologicalSpace X]
{x : X}
{γ γ' : Path x x}
{t t₀ : ↑unitInterval}
(h : t₀ ≤ t)
:
@[simp]
@[simp]
theorem
Path.strans_self
{X : Type u_1}
[TopologicalSpace X]
{x : X}
(γ γ' : Path x x)
(t₀ : ↑unitInterval)
:
@[simp]
theorem
Path.subset_range_strans_left
{X : Type u_1}
[TopologicalSpace X]
{x : X}
{γ γ' : Path x x}
{t₀ : ↑unitInterval}
(h : t₀ ≠ 0)
:
theorem
Path.subset_range_strans_right
{X : Type u_1}
[TopologicalSpace X]
{x : X}
{γ γ' : Path x x}
{t₀ : ↑unitInterval}
(h : t₀ ≠ 1)
:
theorem
Path.range_strans_subset
{X : Type u_1}
[TopologicalSpace X]
{x : X}
{γ γ' : Path x x}
{t₀ : ↑unitInterval}
:
theorem
Path.Continuous.path_strans
{X : Type u_5}
{Y : Type u_6}
[UniformSpace X]
[LocallyCompactSpace X]
[UniformSpace Y]
{f : X → Y}
{t s : X → ↑unitInterval}
{γ γ' : (x : X) → Path (f x) (f x)}
(hγ : Continuous ↿γ)
(hγ' : Continuous ↿γ')
(hγ0 : ∀ ⦃x : X⦄ ⦃s : ↑unitInterval⦄, t x = 0 → (γ x) s = f x)
(hγ'1 : ∀ ⦃x : X⦄ ⦃s : ↑unitInterval⦄, t x = 1 → (γ' x) s = f x)
(ht : Continuous t)
(hs : Continuous s)
:
Continuous fun (x : X) => ((γ x).strans (γ' x) (t x)) (s x)