Documentation
Std
.
Data
.
Iterators
.
Lemmas
.
Producers
.
Empty
Search
return to top
source
Imports
Init.Data.Iterators.Lemmas.Consumers
Std.Data.Iterators.Producers.Empty
Std.Data.Iterators.Lemmas.Producers.Monadic.Empty
Imported by
Std
.
Iterators
.
Iter
.
toIterM_empty
Std
.
Iterators
.
Iter
.
step_empty
Std
.
Iterators
.
Iter
.
toList_empty
Std
.
Iterators
.
Iter
.
toListRev_empty
Std
.
Iterators
.
Iter
.
toArray_empty
Std
.
Iterators
.
Iter
.
forIn_empty
Std
.
Iterators
.
Iter
.
foldM_empty
Std
.
Iterators
.
Iter
.
fold_empty
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
toIterM_empty
{
β
:
Type
u_1}
:
(
empty
β
)
.
toIterM
=
IterM.empty
Id
β
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
step_empty
{
β
:
Type
u_1}
:
(
empty
β
)
.
step
=
⟨
IterStep.done
,
⋯
⟩
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
toList_empty
{
β
:
Type
u_1}
:
(
empty
β
)
.
toList
=
[
]
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
toListRev_empty
{
β
:
Type
u_1}
:
(
empty
β
)
.
toListRev
=
[
]
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
toArray_empty
{
β
:
Type
u_1}
:
(
empty
β
)
.
toArray
=
#[
]
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
forIn_empty
{
m
:
Type
u_1 →
Type
u_2
}
{
β
γ
:
Type
u_1}
[
Monad
m
]
[
LawfulMonad
m
]
{
init
:
γ
}
{
f
:
β
→
γ
→
m
(
ForInStep
γ
)
}
:
forIn
(
empty
β
)
init
f
=
pure
init
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
foldM_empty
{
m
:
Type
u_1 →
Type
u_2
}
{
β
γ
:
Type
u_1}
[
Monad
m
]
[
LawfulMonad
m
]
{
init
:
γ
}
{
f
:
γ
→
β
→
m
γ
}
:
foldM
f
init
(
empty
β
)
=
pure
init
source
@[simp]
theorem
Std
.
Iterators
.
Iter
.
fold_empty
{
β
γ
:
Type
u_1}
{
init
:
γ
}
{
f
:
γ
→
β
→
γ
}
:
fold
f
init
(
empty
β
)
=
init