Documentation

ConNF.Background.Cardinal

def Function.graph' {α : Type u_1} {β : Type u_2} (f : αβ) :
Set (α × β)

An alternate spelling of Function.graph, useful in proving inequalities of cardinals.

Equations
Instances For
    theorem Function.graph'_injective {α : Type u_1} {β : Type u_2} :
    Function.Injective Function.graph'
    theorem Function.card_graph'_eq {α : Type (max u_1 u_2)} {β : Type u_1} (f : αβ) :
    theorem Cardinal.mul_le_of_le {a b c : Cardinal.{u_1}} (hc : Cardinal.aleph0 c) (h1 : a c) (h2 : b c) :
    a * b c
    theorem Cardinal.mk_biUnion_le_of_le_lift {α : Type u} {β : Type v} {s : Set α} {f : (x : α) → x sSet β} (c : Cardinal.{v}) (h : ∀ (x : α) (h : x s), Cardinal.mk (f x h) c) :
    theorem Cardinal.mk_biUnion_le_of_le {α β : Type u_1} {s : Set α} {f : (x : α) → x sSet β} (c : Cardinal.{u_1}) (h : ∀ (x : α) (h : x s), Cardinal.mk (f x h) c) :
    Cardinal.mk (⋃ (x : α), ⋃ (h : x s), f x h) Cardinal.mk s * c
    theorem Cardinal.mk_iUnion_le_of_le_lift {α : Type u} {β : Type v} {f : αSet β} (c : Cardinal.{v}) (h : ∀ (x : α), Cardinal.mk (f x) c) :
    theorem Cardinal.mk_iUnion_le_of_le {α β : Type u_1} {f : αSet β} (c : Cardinal.{u_1}) (h : ∀ (x : α), Cardinal.mk (f x) c) :
    Cardinal.mk (⋃ (x : α), f x) Cardinal.mk α * c
    theorem Cardinal.lift_isRegular (c : Cardinal.{u}) (h : c.IsRegular) :
    (Cardinal.lift.{v, u} c).IsRegular
    theorem Cardinal.le_of_le_add {c d e : Cardinal.{u}} (h : c d + e) (hc : Cardinal.aleph0 c) (he : e < c) :
    c d
    theorem Cardinal.mk_ne_zero_iff_nonempty {α : Type u_1} (s : Set α) :
    Cardinal.mk s 0 s.Nonempty
    theorem Cardinal.compl_nonempty_of_mk_lt {α : Type u_1} {s : Set α} (h : Cardinal.mk s < Cardinal.mk α) :
    s.Nonempty
    theorem Cardinal.mk_pow_le_of_mk_lt_ord_cof {α β : Type u_1} (hα : (Cardinal.mk α).IsStrongLimit) (hβ : Cardinal.mk β < (Cardinal.mk α).ord.cof) :
    theorem Cardinal.pow_le_of_lt_ord_cof {c d : Cardinal.{u_1}} (hc : c.IsStrongLimit) (hd : d < c.ord.cof) :
    c ^ d c

    If c is a strong limit and d is not "too large", then c ^ d = c. By "too large" here, we mean large enough to be a counterexample by König's theorem on cardinals: c < c ^ c.ord.cof.

    theorem Cardinal.mk_fun_le (α : Type u_1) (β : Type u_2) :
    Cardinal.mk (αβ) Cardinal.mk (Set (α × β))
    theorem Cardinal.pow_lt_of_lt {c d e : Cardinal.{u_1}} (hc : c.IsStrongLimit) (hd : d < c) (he : e < c) :
    d ^ e < c

    Strong limit cardinals are closed under exponentials.

    theorem Cardinal.card_codom_le_of_functional {α β : Type u_1} {r : Rel α β} (hr : r.Functional) :
    Cardinal.mk r.codom Cardinal.mk r.dom
    theorem Cardinal.card_codom_le_of_coinjective {α β : Type u_1} {r : Rel α β} (hr : r.Coinjective) :
    Cardinal.mk r.codom Cardinal.mk r.dom