An alternate spelling of Function.graph
, useful in proving inequalities of cardinals.
Equations
- Function.graph' f = {(x, y) : α × β | y = f x}
Instances For
theorem
Function.card_graph'_eq
{α : Type (max u_1 u_2)}
{β : Type u_1}
(f : α → β)
:
Cardinal.mk ↑(Function.graph' f) = Cardinal.mk α
theorem
Cardinal.mul_le_of_le
{a b c : Cardinal.{u_1}}
(hc : Cardinal.aleph0 ≤ c)
(h1 : a ≤ c)
(h2 : b ≤ c)
:
theorem
Cardinal.mk_biUnion_le_of_le_lift
{α : Type u}
{β : Type v}
{s : Set α}
{f : (x : α) → x ∈ s → Set β}
(c : Cardinal.{v})
(h : ∀ (x : α) (h : x ∈ s), Cardinal.mk ↑(f x h) ≤ c)
:
Cardinal.lift.{u, v} (Cardinal.mk ↑(⋃ (x : α), ⋃ (h : x ∈ s), f x h)) ≤ Cardinal.lift.{v, u} (Cardinal.mk ↑s) * Cardinal.lift.{u, v} c
theorem
Cardinal.mk_biUnion_le_of_le
{α β : Type u_1}
{s : Set α}
{f : (x : α) → x ∈ s → Set β}
(c : Cardinal.{u_1})
(h : ∀ (x : α) (h : x ∈ s), Cardinal.mk ↑(f x h) ≤ c)
:
Cardinal.mk ↑(⋃ (x : α), ⋃ (h : x ∈ s), f x h) ≤ Cardinal.mk ↑s * c
theorem
Cardinal.mk_iUnion_le_of_le_lift
{α : Type u}
{β : Type v}
{f : α → Set β}
(c : Cardinal.{v})
(h : ∀ (x : α), Cardinal.mk ↑(f x) ≤ c)
:
Cardinal.lift.{u, v} (Cardinal.mk ↑(⋃ (x : α), f x)) ≤ Cardinal.lift.{v, u} (Cardinal.mk α) * Cardinal.lift.{u, v} c
theorem
Cardinal.mk_iUnion_le_of_le
{α β : Type u_1}
{f : α → Set β}
(c : Cardinal.{u_1})
(h : ∀ (x : α), Cardinal.mk ↑(f x) ≤ c)
:
Cardinal.mk ↑(⋃ (x : α), f x) ≤ Cardinal.mk α * c
theorem
Cardinal.lift_isRegular
(c : Cardinal.{u})
(h : c.IsRegular)
:
(Cardinal.lift.{v, u} c).IsRegular
theorem
Cardinal.le_of_le_add
{c d e : Cardinal.{u}}
(h : c ≤ d + e)
(hc : Cardinal.aleph0 ≤ c)
(he : e < c)
:
c ≤ d
theorem
Cardinal.mk_ne_zero_iff_nonempty
{α : Type u_1}
(s : Set α)
:
Cardinal.mk ↑s ≠ 0 ↔ s.Nonempty
theorem
Cardinal.compl_nonempty_of_mk_lt
{α : Type u_1}
{s : Set α}
(h : Cardinal.mk ↑s < Cardinal.mk α)
:
sᶜ.Nonempty
theorem
Cardinal.mk_pow_le_of_mk_lt_ord_cof
{α β : Type u_1}
(hα : (Cardinal.mk α).IsStrongLimit)
(hβ : Cardinal.mk β < (Cardinal.mk α).ord.cof)
:
Cardinal.mk α ^ Cardinal.mk β ≤ Cardinal.mk α
theorem
Cardinal.pow_le_of_lt_ord_cof
{c d : Cardinal.{u_1}}
(hc : c.IsStrongLimit)
(hd : d < c.ord.cof)
:
If c
is a strong limit and d
is not "too large", then c ^ d = c
.
By "too large" here, we mean large enough to be a counterexample by König's theorem on cardinals:
c < c ^ c.ord.cof
.
theorem
Cardinal.mk_fun_le
(α : Type u_1)
(β : Type u_2)
:
Cardinal.mk (α → β) ≤ Cardinal.mk (Set (α × β))
theorem
Cardinal.mk_power_le_two_power
(α β : Type u_1)
:
Cardinal.mk α ^ Cardinal.mk β ≤ Cardinal.aleph0 ⊔ (2 ^ Cardinal.mk α ⊔ 2 ^ Cardinal.mk β)
theorem
Cardinal.pow_lt_of_lt
{c d e : Cardinal.{u_1}}
(hc : c.IsStrongLimit)
(hd : d < c)
(he : e < c)
:
Strong limit cardinals are closed under exponentials.
theorem
Cardinal.card_codom_le_of_functional
{α β : Type u_1}
{r : Rel α β}
(hr : r.Functional)
:
Cardinal.mk ↑r.codom ≤ Cardinal.mk ↑r.dom
theorem
Cardinal.card_codom_le_of_coinjective
{α β : Type u_1}
{r : Rel α β}
(hr : r.Coinjective)
:
Cardinal.mk ↑r.codom ≤ Cardinal.mk ↑r.dom