theorem
Cardinal.mul_le_of_le
{a b c : Cardinal.{u_1}}
(hc : aleph0 ≤ c)
(h1 : a ≤ c)
(h2 : b ≤ c)
:
theorem
Cardinal.mk_biUnion_le_of_le_lift
{α : Type u}
{β : Type v}
{s : Set α}
{f : (x : α) → x ∈ s → Set β}
(c : Cardinal.{v})
(h : ∀ (x : α) (h : x ∈ s), mk ↑(f x h) ≤ c)
:
theorem
Cardinal.mk_iUnion_le_of_le_lift
{α : Type u}
{β : Type v}
{f : α → Set β}
(c : Cardinal.{v})
(h : ∀ (x : α), mk ↑(f x) ≤ c)
:
theorem
Cardinal.le_of_le_add
{c d e : Cardinal.{u}}
(h : c ≤ d + e)
(hc : aleph0 ≤ c)
(he : e < c)
:
theorem
Cardinal.pow_le_of_lt_ord_cof
{c d : Cardinal.{u_1}}
(hc : c.IsStrongLimit)
(hd : d < c.ord.cof)
:
If c
is a strong limit and d
is not "too large", then c ^ d = c
.
By "too large" here, we mean large enough to be a counterexample by König's theorem on cardinals:
c < c ^ c.ord.cof
.
theorem
Cardinal.pow_lt_of_lt
{c d e : Cardinal.{u_1}}
(hc : c.IsStrongLimit)
(hd : d < c)
(he : e < c)
:
Strong limit cardinals are closed under exponentials.