Documentation

ConNF.Background.Set

theorem Set.symmDiff_trans_subset {α : Type u_1} (s t u : Set α) :
@[simp]
theorem Set.diff_symmDiff_self {α : Type u_1} (s t : Set α) :
s \ symmDiff s t = s t
@[simp]
theorem Set.symmDiff_diff_self {α : Type u_1} (s t : Set α) :
symmDiff s (s \ t) = s t
@[simp]
theorem Set.inter_union_symmDiff {α : Type u_1} (s t : Set α) :
s t symmDiff s t = s t
theorem Set.inter_subset_symmDiff_union_symmDiff {α : Type u_1} {s t u v : Set α} (h : Disjoint u v) :
theorem Set.union_symmDiff_of_disjoint {α : Type u_1} {s t u : Set α} (h : Disjoint t u) :
symmDiff (s t) u = symmDiff s u t
theorem Set.inter_symmDiff_left {α : Type u_1} {s t : Set α} :
symmDiff (s t) s = s \ t
theorem Set.smul_set_def {α : Type u_1} {β : Type u_2} {x : α} {s : Set β} [SMul α β] :
x s = (fun (x_1 : β) => x x_1) '' s
theorem Set.subset_smul_set {α : Type u_1} {β : Type u_2} {x : α} {s t : Set β} [Group α] [MulAction α β] :
t x s x⁻¹ t s
theorem Set.symmDiff_smul_set {α : Type u_1} {β : Type u_2} {x : α} {s t : Set β} [Group α] [MulAction α β] :
x symmDiff s t = symmDiff (x s) (x t)
theorem Set.bounded_lt_union {α : Type u_1} [LinearOrder α] {s t : Set α} (hs : Set.Bounded (fun (x1 x2 : α) => x1 < x2) s) (ht : Set.Bounded (fun (x1 x2 : α) => x1 < x2) t) :
Set.Bounded (fun (x1 x2 : α) => x1 < x2) (s t)