Documentation
ConNF
.
Background
.
Set
Search
Google site search
return to top
source
Imports
Init
Mathlib.Order.ConditionallyCompleteLattice.Basic
Mathlib.Data.Set.Pointwise.SMul
Imported by
Set
.
symmDiff_trans_subset
Set
.
diff_symmDiff_self
Set
.
symmDiff_diff_self
Set
.
inter_union_symmDiff
Set
.
inter_subset_symmDiff_union_symmDiff
Set
.
union_symmDiff_of_disjoint
Set
.
inter_symmDiff_left
Set
.
smul_set_def
Set
.
subset_smul_set
Set
.
symmDiff_smul_set
Set
.
bounded_lt_union
source
theorem
Set
.
symmDiff_trans_subset
{α :
Type
u_1}
(s t u :
Set
α
)
:
symmDiff
s
u
⊆
symmDiff
s
t
∪
symmDiff
t
u
source
@[simp]
theorem
Set
.
diff_symmDiff_self
{α :
Type
u_1}
(s t :
Set
α
)
:
s
\
symmDiff
s
t
=
s
∩
t
source
@[simp]
theorem
Set
.
symmDiff_diff_self
{α :
Type
u_1}
(s t :
Set
α
)
:
symmDiff
s
(
s
\
t
)
=
s
∩
t
source
@[simp]
theorem
Set
.
inter_union_symmDiff
{α :
Type
u_1}
(s t :
Set
α
)
:
s
∩
t
∪
symmDiff
s
t
=
s
∪
t
source
theorem
Set
.
inter_subset_symmDiff_union_symmDiff
{α :
Type
u_1}
{s t u v :
Set
α
}
(h :
Disjoint
u
v
)
:
s
∩
t
⊆
symmDiff
s
u
∪
symmDiff
t
v
source
theorem
Set
.
union_symmDiff_of_disjoint
{α :
Type
u_1}
{s t u :
Set
α
}
(h :
Disjoint
t
u
)
:
symmDiff
(
s
∪
t
)
u
=
symmDiff
s
u
∪
t
source
theorem
Set
.
inter_symmDiff_left
{α :
Type
u_1}
{s t :
Set
α
}
:
symmDiff
(
s
∩
t
)
s
=
s
\
t
source
theorem
Set
.
smul_set_def
{α :
Type
u_1}
{β :
Type
u_2}
{x :
α
}
{s :
Set
β
}
[
SMul
α
β
]
:
x
•
s
=
(fun (
x_1
:
β
) =>
x
•
x_1
)
''
s
source
theorem
Set
.
subset_smul_set
{α :
Type
u_1}
{β :
Type
u_2}
{x :
α
}
{s t :
Set
β
}
[
Group
α
]
[
MulAction
α
β
]
:
t
⊆
x
•
s
↔
x
⁻¹
•
t
⊆
s
source
theorem
Set
.
symmDiff_smul_set
{α :
Type
u_1}
{β :
Type
u_2}
{x :
α
}
{s t :
Set
β
}
[
Group
α
]
[
MulAction
α
β
]
:
x
•
symmDiff
s
t
=
symmDiff
(
x
•
s
)
(
x
•
t
)
source
theorem
Set
.
bounded_lt_union
{α :
Type
u_1}
[
LinearOrder
α
]
{s t :
Set
α
}
(hs :
Set.Bounded
(fun (
x1
x2
:
α
) =>
x1
<
x2
)
s
)
(ht :
Set.Bounded
(fun (
x1
x2
:
α
) =>
x1
<
x2
)
t
)
:
Set.Bounded
(fun (
x1
x2
:
α
) =>
x1
<
x2
)
(
s
∪
t
)