Base permutations #
In this file, we define the group of base permutations, and their actions on atoms, litters, and near-litters.
Main declarations #
ConNF.BasePerm
: The type of base permutations.
- atoms : Equiv.Perm ConNF.Atom
- litters : Equiv.Perm ConNF.Litter
Instances For
instance
ConNF.BasePerm.instSuperAPermAtom
[ConNF.Params]
:
ConNF.SuperA ConNF.BasePerm (Equiv.Perm ConNF.Atom)
Equations
- ConNF.BasePerm.instSuperAPermAtom = { superA := ConNF.BasePerm.atoms }
instance
ConNF.BasePerm.instSuperLPermLitter
[ConNF.Params]
:
ConNF.SuperL ConNF.BasePerm (Equiv.Perm ConNF.Litter)
Equations
- ConNF.BasePerm.instSuperLPermLitter = { superL := ConNF.BasePerm.litters }
theorem
ConNF.BasePerm.smul_near_smul
[ConNF.Params]
(π : ConNF.BasePerm)
(s : Set ConNF.Atom)
(L : ConNF.Litter)
:
@[simp]
theorem
ConNF.BasePerm.smul_nearLitter_atoms
[ConNF.Params]
(π : ConNF.BasePerm)
(N : ConNF.NearLitter)
:
@[simp]
theorem
ConNF.BasePerm.smul_nearLitter_litter
[ConNF.Params]
(π : ConNF.BasePerm)
(N : ConNF.NearLitter)
:
theorem
ConNF.BasePerm.ext
[ConNF.Params]
{π₁ π₂ : ConNF.BasePerm}
(h : ∀ (a : ConNF.Atom), π₁ • a = π₂ • a)
:
π₁ = π₂
Equations
- ConNF.BasePerm.instOne = { one := { atoms := 1, litters := 1, apply_near_apply := ⋯ } }
@[simp]
@[simp]
Equations
- ConNF.BasePerm.instMulActionAtom = MulAction.mk ⋯ ⋯
Equations
- ConNF.BasePerm.instMulActionLitter = MulAction.mk ⋯ ⋯
instance
ConNF.BasePerm.instMulActionNearLitter
[ConNF.Params]
:
MulAction ConNF.BasePerm ConNF.NearLitter
Equations
- ConNF.BasePerm.instMulActionNearLitter = MulAction.mk ⋯ ⋯
@[simp]
theorem
ConNF.BasePerm.smul_interference
[ConNF.Params]
(π : ConNF.BasePerm)
(N₁ N₂ : ConNF.NearLitter)
:
π • ConNF.interference N₁ N₂ = ConNF.interference (π • N₁) (π • N₂)