Documentation

ConNF.Coherent.Enumeration

Enumerations #

In this file, we define enumerations of a type.

Main declarations #

structure ConNF.Enumeration [ConNF.Params] (X : Type u) :
  • bound : ConNF.κ
  • rel : Rel ConNF.κ X
  • lt_bound : iself.rel.dom, i < self.bound
  • rel_coinjective : self.rel.Coinjective
Instances For
    theorem ConNF.Enumeration.ext {inst✝ : ConNF.Params} {X : Type u} {x y : ConNF.Enumeration X} (bound : x.bound = y.bound) (rel : x.rel = y.rel) :
    x = y
    Equations
    Equations
    theorem ConNF.Enumeration.mem_iff [ConNF.Params] {X : Type u} (x : X) (E : ConNF.Enumeration X) :
    x E x E.rel.codom
    theorem ConNF.Enumeration.mem_congr [ConNF.Params] {X : Type u} {E F : ConNF.Enumeration X} (h : E = F) (x : X) :
    x E x F
    Equations
    • ConNF.Enumeration.empty = { bound := 0, rel := fun (x : ConNF.κ) (x : X) => False, lt_bound := , rel_coinjective := }
    Instances For
      @[simp]
      theorem ConNF.Enumeration.not_mem_empty [ConNF.Params] {X : Type u} (x : X) :
      xConNF.Enumeration.empty
      noncomputable def ConNF.Enumeration.singleton [ConNF.Params] {X : Type u} (x : X) :
      Equations
      Instances For

        Cardinality bounds on enumerations #

        def ConNF.enumerationEmbedding [ConNF.Params] (X : Type u) :
        ConNF.Enumeration X ConNF.κ × {s : Set (ConNF.κ × X) | ConNF.Small s}
        Equations
        Instances For

          Enumerations from sets #

          theorem ConNF.Enumeration.exists_equiv [ConNF.Params] {X : Type u} (s : Set X) (hs : ConNF.Small s) :
          Nonempty ((i : ConNF.κ) × (s (Set.Iio i)))
          noncomputable def ConNF.Enumeration.ofSet [ConNF.Params] {X : Type u} (s : Set X) (hs : ConNF.Small s) :
          Equations
          • ConNF.Enumeration.ofSet s hs = { bound := .some.fst, rel := fun (i : ConNF.κ) (x : X) => ∃ (h : x s), i = (.some.snd x, h), lt_bound := , rel_coinjective := }
          Instances For
            @[simp]
            theorem ConNF.Enumeration.mem_ofSet_iff [ConNF.Params] {X : Type u} (s : Set X) (hs : ConNF.Small s) (x : X) :
            @[simp]
            theorem ConNF.Enumeration.ofSet_coe [ConNF.Params] {X : Type u} (s : Set X) (hs : ConNF.Small s) :
            (ConNF.Enumeration.ofSet s hs).rel.codom = s

            Operations on enumerations #

            Equations
            • E.image f = { bound := E.bound, rel := fun (i : ConNF.κ) (y : Y) => ∃ (x : X), E.rel i x f x = y, lt_bound := , rel_coinjective := }
            Instances For
              @[simp]
              theorem ConNF.Enumeration.image_bound [ConNF.Params] {X Y : Type u} {E : ConNF.Enumeration X} {f : XY} :
              (E.image f).bound = E.bound
              theorem ConNF.Enumeration.image_rel [ConNF.Params] {X Y : Type u} {E : ConNF.Enumeration X} {f : XY} (i : ConNF.κ) (y : Y) :
              (E.image f).rel i y ∃ (x : X), E.rel i x f x = y
              @[simp]
              theorem ConNF.Enumeration.mem_image [ConNF.Params] {X Y : Type u} {E : ConNF.Enumeration X} {f : XY} (y : Y) :
              y E.image f y f '' E.rel.codom
              Equations
              • E.invImage f hf = { bound := E.bound, rel := fun (i : ConNF.κ) (y : Y) => E.rel i (f y), lt_bound := , rel_coinjective := }
              Instances For
                theorem ConNF.Enumeration.invImage_rel [ConNF.Params] {X Y : Type u} {E : ConNF.Enumeration X} {f : YX} {hf : Function.Injective f} (i : ConNF.κ) (y : Y) :
                (E.invImage f hf).rel i y E.rel i (f y)
                @[simp]
                theorem ConNF.Enumeration.mem_invImage [ConNF.Params] {X Y : Type u} {E : ConNF.Enumeration X} {f : YX} {hf : Function.Injective f} (y : Y) :
                y E.invImage f hf f y E
                def ConNF.Enumeration.comp [ConNF.Params] {X Y : Type u} (E : ConNF.Enumeration X) (r : Rel X Y) (hr : r.Coinjective) :
                Equations
                • E.comp r hr = { bound := E.bound, rel := E.rel.comp r, lt_bound := , rel_coinjective := }
                Instances For
                  Equations
                  • ConNF.Enumeration.instSMulOfMulAction = { smul := fun (π : G) (E : ConNF.Enumeration X) => E.invImage (fun (x : X) => π⁻¹ x) }
                  @[simp]
                  theorem ConNF.Enumeration.smul_rel [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (π : G) (E : ConNF.Enumeration X) (i : ConNF.κ) (x : X) :
                  (π E).rel i x E.rel i (π⁻¹ x)
                  @[simp]
                  theorem ConNF.Enumeration.mem_smul [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (π : G) (E : ConNF.Enumeration X) (x : X) :
                  x π E π⁻¹ x E
                  @[simp]
                  theorem ConNF.Enumeration.smul_rel_dom [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (π : G) (E : ConNF.Enumeration X) :
                  (π E).rel.dom = E.rel.dom
                  @[simp]
                  theorem ConNF.Enumeration.smul_rel_codom [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (π : G) (E : ConNF.Enumeration X) :
                  (π E).rel.codom = π E.rel.codom
                  @[simp]
                  theorem ConNF.Enumeration.smul_coe [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (π : G) (E : ConNF.Enumeration X) :
                  (π E).rel.codom = π E.rel.codom
                  Equations
                  theorem ConNF.Enumeration.mem_smul_iff [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (x : X) (g : G) (E : ConNF.Enumeration X) :
                  x g E g⁻¹ x E
                  theorem ConNF.Enumeration.eq_of_smul_eq_smul [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] {g₁ g₂ : G} {E : ConNF.Enumeration X} (h : g₁ E = g₂ E) (x : X) (hx : x E) :
                  g₁ x = g₂ x
                  theorem ConNF.Enumeration.eq_of_smul_eq [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] {g : G} {E : ConNF.Enumeration X} (h : g E = E) (x : X) (hx : x E) :
                  g x = x

                  Concatenation of enumerations #

                  noncomputable instance ConNF.Enumeration.instAdd [ConNF.Params] {X : Type u} :
                  Equations
                  • One or more equations did not get rendered due to their size.
                  @[simp]
                  theorem ConNF.Enumeration.add_bound [ConNF.Params] {X : Type u} (E F : ConNF.Enumeration X) :
                  (E + F).bound = E.bound + F.bound
                  theorem ConNF.Enumeration.rel_add_iff [ConNF.Params] {X : Type u} {E F : ConNF.Enumeration X} (i : ConNF.κ) (x : X) :
                  (E + F).rel i x E.rel i x ∃ (j : ConNF.κ), E.bound + j = i F.rel j x
                  theorem ConNF.Enumeration.add_rel_dom [ConNF.Params] {X : Type u} (E F : ConNF.Enumeration X) :
                  (E + F).rel.dom = E.rel.dom (fun (x : ConNF.κ) => E.bound + x) '' F.rel.dom
                  @[simp]
                  theorem ConNF.Enumeration.mem_add_iff [ConNF.Params] {X : Type u} {E F : ConNF.Enumeration X} (x : X) :
                  x E + F x E x F
                  @[simp]
                  theorem ConNF.Enumeration.coe_add [ConNF.Params] {X : Type u} {E F : ConNF.Enumeration X} :
                  (E + F).rel.codom = E.rel.codom F.rel.codom
                  @[simp]
                  theorem ConNF.Enumeration.add_empty [ConNF.Params] {X : Type u} (E : ConNF.Enumeration X) :
                  E + ConNF.Enumeration.empty = E
                  theorem ConNF.Enumeration.add_inj_of_bound_eq_bound [ConNF.Params] {X : Type u} {E F G H : ConNF.Enumeration X} (h : E.bound = F.bound) (h' : E + G = F + H) :
                  E = F G = H
                  theorem ConNF.Enumeration.add_inj_iff_of_bound_eq_bound [ConNF.Params] {X : Type u} {E F G H : ConNF.Enumeration X} (h : E.bound = F.bound) :
                  E + G = F + H E = F G = H
                  theorem ConNF.Enumeration.smul_add [ConNF.Params] {G : Type u_1} {X : Type u} [Group G] [MulAction G X] (g : G) (E F : ConNF.Enumeration X) :
                  g (E + F) = g E + g F