Documentation

ConNF.Levels.StrSet

Structural sets #

In this file, we define structural sets, which serve as the environment inside which we will construct the types of our model

Main declarations #

@[irreducible]
def ConNF.StrSet [ConNF.Params] :
ConNF.TypeIndexType u
Equations
Instances For
    theorem ConNF.StrSet.coe_eq [ConNF.Params] (α : ConNF.Λ) :
    ConNF.StrSet α = ((β : ConNF.TypeIndex) → β < αSet (ConNF.StrSet β))
    Equations
    Instances For
      def ConNF.StrSet.coeEquiv [ConNF.Params] {α : ConNF.Λ} :
      ConNF.StrSet α ((β : ConNF.TypeIndex) → β < αSet (ConNF.StrSet β))
      Equations
      Instances For
        theorem ConNF.StrSet.coe_ext_iff' [ConNF.Params] {α : ConNF.Λ} {x y : ConNF.StrSet α} :
        x = y ∀ (β : ConNF.TypeIndex) ( : β < α) (z : ConNF.StrSet β), z ConNF.StrSet.coeEquiv x β z ConNF.StrSet.coeEquiv y β

        Extensionality for structural sets at proper type indices. If two structural sets have the same extensions at every lower type index, then they are the same.

        @[irreducible]
        def ConNF.StrSet.strPerm_smul [ConNF.Params] {α : ConNF.TypeIndex} :
        Equations
        Instances For
          theorem ConNF.StrSet.strPerm_smul_bot_def [ConNF.Params] (π : ConNF.StrPerm ) (x : ConNF.StrSet ) :
          ConNF.StrSet.strPerm_smul π x = ConNF.StrSet.botEquiv.symm (π ConNF.Path.nil ConNF.StrSet.botEquiv x)
          theorem ConNF.StrSet.strPerm_smul_coe_def [ConNF.Params] {α : ConNF.Λ} (π : ConNF.StrPerm α) (x : ConNF.StrSet α) :
          ConNF.StrSet.strPerm_smul π x = ConNF.StrSet.coeEquiv.symm fun (β : ConNF.TypeIndex) ( : β < α) => ConNF.StrSet.strPerm_smul (π ) '' ConNF.StrSet.coeEquiv x β
          instance ConNF.StrSet.instSMulStrPerm [ConNF.Params] {α : ConNF.TypeIndex} :
          Equations
          • ConNF.StrSet.instSMulStrPerm = { smul := ConNF.StrSet.strPerm_smul }
          theorem ConNF.StrSet.strPerm_smul_bot_def' [ConNF.Params] (π : ConNF.StrPerm ) (x : ConNF.StrSet ) :
          π x = ConNF.StrSet.botEquiv.symm (π ConNF.Path.nil ConNF.StrSet.botEquiv x)
          theorem ConNF.StrSet.strPerm_smul_coe_def' [ConNF.Params] {α : ConNF.Λ} (π : ConNF.StrPerm α) (x : ConNF.StrSet α) :
          π x = ConNF.StrSet.coeEquiv.symm fun (β : ConNF.TypeIndex) ( : β < α) => ConNF.StrSet.strPerm_smul (π ) '' ConNF.StrSet.coeEquiv x β
          @[simp]
          theorem ConNF.StrSet.strPerm_smul_bot [ConNF.Params] (π : ConNF.StrPerm ) (x : ConNF.StrSet ) :
          ConNF.StrSet.botEquiv (π x) = π ConNF.Path.nil ConNF.StrSet.botEquiv x
          @[simp]
          theorem ConNF.StrSet.strPerm_smul_coe [ConNF.Params] {α : ConNF.Λ} (π : ConNF.StrPerm α) (x : ConNF.StrSet α) :
          ConNF.StrSet.coeEquiv (π x) = fun (β : ConNF.TypeIndex) ( : β < α) => π ConNF.StrSet.coeEquiv x β
          theorem ConNF.StrSet.mul_strPerm_smul [ConNF.Params] {α : ConNF.TypeIndex} (π₁ π₂ : ConNF.StrPerm α) (x : ConNF.StrSet α) :
          Equations
          theorem ConNF.StrSet.smul_none [ConNF.Params] {α : ConNF.Λ} (π : ConNF.StrPerm α) :
          (π ConNF.StrSet.coeEquiv.symm fun (x : ConNF.TypeIndex) (x_1 : x < α) => ) = ConNF.StrSet.coeEquiv.symm fun (x : ConNF.TypeIndex) (x_1 : x < α) =>

          Notation for typed membership #

          class ConNF.TypedMem [ConNF.Params] (X : Type u_1) (Y : Type u_2) (β α : outParam ConNF.TypeIndex) :
          Type (max u_1 u_2)
          • typedMem : β < αXYProp
          Instances
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              instance ConNF.instTypedMemStrSet [ConNF.Params] {β α : ConNF.TypeIndex} :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem ConNF.StrSet.mem_iff [ConNF.Params] {α : ConNF.Λ} {β : ConNF.TypeIndex} {x : ConNF.StrSet β} {y : ConNF.StrSet α} (h : β < α) :
              x ∈[h] y x ConNF.StrSet.coeEquiv y β h
              theorem ConNF.StrSet.coe_ext_iff [ConNF.Params] {α : ConNF.Λ} {x y : ConNF.StrSet α} :
              x = y ∀ (β : ConNF.TypeIndex) ( : β < α) (z : ConNF.StrSet β), z ∈[] x z ∈[] y

              Extensionality for structural sets at proper type indices. If two structural sets have the same extensions at every lower type index, then they are the same.

              theorem ConNF.StrSet.mem_smul_iff [ConNF.Params] {α β : ConNF.TypeIndex} {x : ConNF.StrSet β} {y : ConNF.StrSet α} (h : β < α) (π : ConNF.StrPerm α) :
              x ∈[h] π y (π h)⁻¹ x ∈[h] y