Documentation
ConNF
.
ModelData
.
Fuzz
Search
return to top
source
Imports
Init
ConNF.ModelData.ModelData
ConNF.Position.BasePositions
Imported by
ConNF
.
fuzz
ConNF
.
fuzz_β_eq
ConNF
.
fuzz_γ_eq
ConNF
.
fuzz_injective
ConNF
.
fuzz_ν
ConNF
.
pos_fuzz
The fuzz map
#
In this file, we define the
fuzz
map.
Main declarations
#
ConNF.fuzz
: The
fuzz
map.
source
def
ConNF
.
fuzz
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
(
hβγ
:
β
≠
↑
γ
)
:
Tangle
β
→
Litter
Equations
ConNF.fuzz
hβγ
=
(fun (
x
:
ConNF.μ
) =>
{
ν
:=
x
,
β
:=
β
,
γ
:=
γ
,
β_ne_γ
:=
hβγ
}
)
∘
ConNF.funOfDeny
⋯
(fun (
t
:
ConNF.Tangle
β
) =>
{
ConNF.pos
t
}
)
⋯
Instances For
source
theorem
ConNF
.
fuzz_β_eq
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
{
β'
:
TypeIndex
}
[
ModelData
β'
]
[
Position
(
Tangle
β'
)
]
{
γ'
:
Λ
}
{
hβγ
:
β
≠
↑
γ
}
{
hβγ'
:
β'
≠
↑
γ'
}
{
t
:
Tangle
β
}
{
t'
:
Tangle
β'
}
(
h
:
fuzz
hβγ
t
=
fuzz
hβγ'
t'
)
:
β
=
β'
source
theorem
ConNF
.
fuzz_γ_eq
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
{
β'
:
TypeIndex
}
[
ModelData
β'
]
[
Position
(
Tangle
β'
)
]
{
γ'
:
Λ
}
{
hβγ
:
β
≠
↑
γ
}
{
hβγ'
:
β'
≠
↑
γ'
}
{
t
:
Tangle
β
}
{
t'
:
Tangle
β'
}
(
h
:
fuzz
hβγ
t
=
fuzz
hβγ'
t'
)
:
γ
=
γ'
source
theorem
ConNF
.
fuzz_injective
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
{
hβγ
:
β
≠
↑
γ
}
{
t₁
t₂
:
Tangle
β
}
(
h
:
fuzz
hβγ
t₁
=
fuzz
hβγ
t₂
)
:
t₁
=
t₂
source
theorem
ConNF
.
fuzz_ν
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
(
hβγ
:
β
≠
↑
γ
)
(
t
:
Tangle
β
)
:
pos
t
<
(
fuzz
hβγ
t
)
.
ν
source
theorem
ConNF
.
pos_fuzz
[
Params
]
{
β
:
TypeIndex
}
[
ModelData
β
]
[
Position
(
Tangle
β
)
]
{
γ
:
Λ
}
(
hβγ
:
β
≠
↑
γ
)
(
t
:
Tangle
β
)
:
pos
t
<
pos
(
fuzz
hβγ
t
)