Documentation

ConNF.ModelData.ModelData

Model data #

In this file, we define what model data at a type index means.

Main declarations #

class ConNF.PreModelData [ConNF.Params] (α : ConNF.TypeIndex) :
Type (u + 1)

The same as ModelData but without the propositions.

Instances
    Equations
    • ConNF.instSuperUTSetStrSet = { superU := ConNF.PreModelData.tSetForget }
    Equations
    • ConNF.instSuperUAllPermStrPerm = { superU := ConNF.PreModelData.allPermForget }
    structure ConNF.Support.Supports [ConNF.Params] {X : Type u_1} {α : ConNF.TypeIndex} [ConNF.PreModelData α] [MulAction (ConNF.AllPerm α) X] (S : ConNF.Support α) (x : X) :
    Instances For
      theorem ConNF.Support.Supports.mono [ConNF.Params] {X : Type u_1} {α : ConNF.TypeIndex} [ConNF.PreModelData α] [MulAction (ConNF.AllPerm α) X] {S T : ConNF.Support α} {x : X} (hS : S.Supports x) (h : S T) (hT : α = T = ConNF.Enumeration.empty) :
      T.Supports x
      class ConNF.ModelData [ConNF.Params] (α : ConNF.TypeIndex) extends ConNF.PreModelData α :
      Type (u + 1)
      Instances
        theorem ConNF.tSetForget_injective [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {x₁ x₂ : ConNF.TSet α} (h : x₁ = x₂) :
        x₁ = x₂
        theorem ConNF.allPermForget_injective [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {ρ₁ ρ₂ : ConNF.AllPerm α} (h : ρ₁ = ρ₂) :
        ρ₁ = ρ₂
        @[simp]
        theorem ConNF.allPermForget_inv [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] (ρ : ConNF.AllPerm α) :
        @[simp]
        theorem ConNF.allPermForget_npow [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] (ρ : ConNF.AllPerm α) (n : ) :
        (ρ ^ n) = ρ ^ n
        @[simp]
        theorem ConNF.allPermForget_zpow [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] (ρ : ConNF.AllPerm α) (n : ) :
        (ρ ^ n) = ρ ^ n
        theorem ConNF.Support.Supports.smul_eq_smul [ConNF.Params] {X : Type u_1} {α : ConNF.TypeIndex} [ConNF.ModelData α] [MulAction (ConNF.AllPerm α) X] {S : ConNF.Support α} {x : X} (h : S.Supports x) {ρ₁ ρ₂ : ConNF.AllPerm α} (hρ : ρ₁ S = ρ₂ S) :
        ρ₁ x = ρ₂ x
        theorem ConNF.Support.Supports.smul_eq_of_smul_eq [ConNF.Params] {X : Type u_1} {α : ConNF.TypeIndex} [ConNF.ModelData α] [MulAction (ConNF.AllPerm α) X] {S : ConNF.Support α} {x : X} (h : S.Supports x) {ρ : ConNF.AllPerm α} (hρ : ρ S = S) :
        ρ x = x
        theorem ConNF.Support.Supports.smul [ConNF.Params] {X : Type u_1} {α : ConNF.TypeIndex} [ConNF.ModelData α] [MulAction (ConNF.AllPerm α) X] {S : ConNF.Support α} {x : X} (h : S.Supports x) (ρ : ConNF.AllPerm α) :
        (ρ S).Supports (ρ x)
        instance ConNF.instTypedMemTSet [ConNF.Params] {β α : ConNF.TypeIndex} [ConNF.ModelData β] [ConNF.ModelData α] :
        Equations
        theorem ConNF.TSet.forget_mem_forget [ConNF.Params] {β α : ConNF.TypeIndex} [ConNF.ModelData β] [ConNF.ModelData α] (h : β < α) {x : ConNF.TSet β} {y : ConNF.TSet α} :
        structure ConNF.Tangle [ConNF.Params] (α : ConNF.TypeIndex) [ConNF.ModelData α] :
        Instances For
          theorem ConNF.Tangle.ext {inst✝ : ConNF.Params} {α : ConNF.TypeIndex} {inst✝¹ : ConNF.ModelData α} {x y : ConNF.Tangle α} (set : x.set = y.set) (support : x.support = y.support) :
          x = y
          Equations
          • ConNF.instSMulAllPermTangle = { smul := fun (ρ : ConNF.AllPerm α) (t : ConNF.Tangle α) => { set := ρ t.set, support := ρ t.support, support_supports := } }
          @[simp]
          theorem ConNF.Tangle.smul_set [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] (ρ : ConNF.AllPerm α) (t : ConNF.Tangle α) :
          (ρ t).set = ρ t.set
          @[simp]
          theorem ConNF.Tangle.smul_support [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] (ρ : ConNF.AllPerm α) (t : ConNF.Tangle α) :
          (ρ t).support = ρ t.support
          theorem ConNF.Tangle.smul_eq_smul [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {ρ₁ ρ₂ : ConNF.AllPerm α} {t : ConNF.Tangle α} (h : ρ₁ t.support = ρ₂ t.support) :
          ρ₁ t = ρ₂ t
          Equations
          theorem ConNF.Tangle.smul_eq [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {ρ : ConNF.AllPerm α} {t : ConNF.Tangle α} (h : ρ t.support = t.support) :
          ρ t = t
          theorem ConNF.Tangle.smul_atom_eq_of_mem_support [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {ρ₁ ρ₂ : ConNF.AllPerm α} {t : ConNF.Tangle α} (h : ρ₁ t = ρ₂ t) {a : ConNF.Atom} {A : α } (ha : a (t.support ⇘. A)) :
          ρ₁ A a = ρ₂ A a
          theorem ConNF.Tangle.smul_nearLitter_eq_of_mem_support [ConNF.Params] {α : ConNF.TypeIndex} [ConNF.ModelData α] {ρ₁ ρ₂ : ConNF.AllPerm α} {t : ConNF.Tangle α} (h : ρ₁ t = ρ₂ t) {N : ConNF.NearLitter} {A : α } (hN : N (t.support ⇘. A)) :
          ρ₁ A N = ρ₂ A N

          Criteria for supports #

          theorem ConNF.Support.supports_coe [ConNF.Params] {α : ConNF.Λ} {X : Type u_1} [ConNF.PreModelData α] [MulAction (ConNF.AllPerm α) X] (S : ConNF.Support α) (x : X) (h : ∀ (ρ : ConNF.AllPerm α), (∀ (A : α ), a(S ⇘. A), ρ A a = a)(∀ (A : α ), N(S ⇘. A), ρ A N = N)ρ x = x) :
          S.Supports x
          theorem ConNF.Support.supports_bot [ConNF.Params] {X : Type u_1} [ConNF.PreModelData ] [MulAction (ConNF.AllPerm ) X] (E : ConNF.Enumeration ( × ConNF.Atom)) (x : X) (h : ∀ (ρ : ConNF.AllPerm ), (∀ (A : ) (x : ConNF.Atom), (A, x) Eρ A x = x)ρ x = x) :
          { atoms := E, nearLitters := ConNF.Enumeration.empty }.Supports x

          Model data at level #

          Equations
          Instances For
            Equations
            Instances For