Documentation

ConNF.ModelData.Support

Supports #

In this file, we define the notion of a support.

Main declarations #

Base supports #

@[simp]
theorem ConNF.BaseSupport.ext [ConNF.Params] {S T : ConNF.BaseSupport} (h₁ : S = T) (h₂ : S = T) :
S = T
theorem ConNF.BaseSupport.smul_eq_smul_iff [ConNF.Params] (π₁ π₂ : ConNF.BasePerm) (S : ConNF.BaseSupport) :
π₁ S = π₂ S (∀ aS, π₁ a = π₂ a) NS, π₁ N = π₂ N
theorem ConNF.BaseSupport.smul_eq_iff [ConNF.Params] (π : ConNF.BasePerm) (S : ConNF.BaseSupport) :
π S = S (∀ aS, π a = a) NS, π N = N
Equations
Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Structural supports #

    @[simp]
    theorem ConNF.Support.mk_atoms [ConNF.Params] {α : ConNF.TypeIndex} (E : ConNF.Enumeration (α × ConNF.Atom)) (F : ConNF.Enumeration (α × ConNF.NearLitter)) :
    { atoms := E, nearLitters := F } = E
    @[simp]
    Equations
    Equations
    @[simp]
    theorem ConNF.Support.deriv_atoms [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support α) (A : α β) :
    S A = (S A)
    @[simp]
    theorem ConNF.Support.deriv_nearLitters [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support α) (A : α β) :
    S A = (S A)
    @[simp]
    theorem ConNF.Support.sderiv_atoms [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support α) (h : β < α) :
    S h = (S h)
    @[simp]
    theorem ConNF.Support.sderiv_nearLitters [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support α) (h : β < α) :
    S h = (S h)
    @[simp]
    theorem ConNF.Support.coderiv_atoms [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support β) (A : α β) :
    S A = (S A)
    @[simp]
    @[simp]
    theorem ConNF.Support.scoderiv_atoms [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support β) (h : β < α) :
    S h = (S h)
    @[simp]
    theorem ConNF.Support.scoderiv_nearLitters [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support β) (h : β < α) :
    S h = (S h)
    theorem ConNF.Support.ext' [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} (h₁ : S = T) (h₂ : S = T) :
    S = T
    theorem ConNF.Support.ext [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} (h : ∀ (A : α ), S ⇘. A = T ⇘. A) :
    S = T
    @[simp]
    theorem ConNF.Support.deriv_derivBot [ConNF.Params] {β α : ConNF.TypeIndex} (S : ConNF.Support α) (A : α β) (B : β ) :
    S A ⇘. B = S ⇘. (A B)
    @[simp]
    theorem ConNF.Support.coderiv_deriv_eq [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support β) (A : α β) :
    S A A = S
    theorem ConNF.Support.eq_of_atom_mem_scoderiv_botDeriv [ConNF.Params] {α β : ConNF.TypeIndex} {S : ConNF.Support β} {A : α } {h : β < α} {a : ConNF.Atom} (ha : a (S h ⇘. A)) :
    ∃ (B : β ), A = B h
    theorem ConNF.Support.eq_of_nearLitter_mem_scoderiv_botDeriv [ConNF.Params] {α β : ConNF.TypeIndex} {S : ConNF.Support β} {A : α } {h : β < α} {N : ConNF.NearLitter} (hN : N (S h ⇘. A)) :
    ∃ (B : β ), A = B h
    @[simp]
    theorem ConNF.Support.scoderiv_botDeriv_eq [ConNF.Params] {α β : ConNF.TypeIndex} (S : ConNF.Support β) (A : β ) (h : β < α) :
    S h ⇘. (A h) = S ⇘. A
    @[simp]
    theorem ConNF.Support.scoderiv_deriv_eq [ConNF.Params] {α β γ : ConNF.TypeIndex} (S : ConNF.Support β) (A : β γ) (h : β < α) :
    S h (A h) = S A
    @[simp]
    theorem ConNF.Support.coderiv_inj [ConNF.Params] {α β : ConNF.TypeIndex} (S T : ConNF.Support β) (A : α β) :
    S A = T A S = T
    @[simp]
    theorem ConNF.Support.scoderiv_inj [ConNF.Params] {α β : ConNF.TypeIndex} (S T : ConNF.Support β) (h : β < α) :
    S h = T h S = T
    Equations
    @[simp]
    @[simp]
    theorem ConNF.Support.smul_derivBot [ConNF.Params] {α : ConNF.TypeIndex} (π : ConNF.StrPerm α) (S : ConNF.Support α) (A : α ) :
    (π S) ⇘. A = π A S ⇘. A
    theorem ConNF.Support.smul_coderiv [ConNF.Params] {β α : ConNF.TypeIndex} (π : ConNF.StrPerm α) (S : ConNF.Support β) (A : α β) :
    π S A = (π A S) A
    theorem ConNF.Support.smul_scoderiv [ConNF.Params] {β α : ConNF.TypeIndex} (π : ConNF.StrPerm α) (S : ConNF.Support β) (h : β < α) :
    π S h = (π h S) h
    theorem ConNF.Support.smul_eq_smul_iff [ConNF.Params] {β : ConNF.TypeIndex} (π₁ π₂ : ConNF.StrPerm β) (S : ConNF.Support β) :
    π₁ S = π₂ S ∀ (A : β ), (∀ a(S ⇘. A), π₁ A a = π₂ A a) N(S ⇘. A), π₁ A N = π₂ A N
    theorem ConNF.Support.smul_eq_iff [ConNF.Params] {β : ConNF.TypeIndex} (π : ConNF.StrPerm β) (S : ConNF.Support β) :
    π S = S ∀ (A : β ), (∀ a(S ⇘. A), π A a = a) N(S ⇘. A), π A N = N
    Equations
    @[simp]
    theorem ConNF.Support.add_derivBot [ConNF.Params] {α : ConNF.TypeIndex} (S T : ConNF.Support α) (A : α ) :
    (S + T) ⇘. A = S ⇘. A + T ⇘. A
    theorem ConNF.Support.smul_add [ConNF.Params] {α : ConNF.TypeIndex} (S T : ConNF.Support α) (π : ConNF.StrPerm α) :
    π (S + T) = π S + π T
    theorem ConNF.Support.add_inj_of_bound_eq_bound [ConNF.Params] {α : ConNF.TypeIndex} {S T U V : ConNF.Support α} (ha : S.bound = T.bound) (hN : S.bound = T.bound) (h' : S + U = T + V) :
    S = T U = V
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Orders on supports #

      Equations
      Equations
      Instances For
        theorem ConNF.BaseSupport.Subsupport.le [ConNF.Params] {S T : ConNF.BaseSupport} (h : S.Subsupport T) :
        S T
        theorem ConNF.BaseSupport.Subsupport.trans [ConNF.Params] {S T U : ConNF.BaseSupport} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) :
        S.Subsupport U
        theorem ConNF.BaseSupport.smul_subsupport_smul [ConNF.Params] {S T : ConNF.BaseSupport} (h : S.Subsupport T) (π : ConNF.BasePerm) :
        (π S).Subsupport (π T)
        Equations
        theorem ConNF.Support.smul_le_smul [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} (h : S T) (π : ConNF.StrPerm α) :
        π S π T
        Equations
        Instances For
          theorem ConNF.Support.Subsupport.le [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} (h : S.Subsupport T) :
          S T
          theorem ConNF.Support.Subsupport.trans [ConNF.Params] {α : ConNF.TypeIndex} {S T U : ConNF.Support α} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) :
          S.Subsupport U
          theorem ConNF.Support.smul_subsupport_smul [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} (h : S.Subsupport T) (π : ConNF.StrPerm α) :
          (π S).Subsupport (π T)
          theorem ConNF.subsupport_add [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} :
          S.Subsupport (S + T)
          theorem ConNF.smul_eq_of_subsupport [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} {π : ConNF.StrPerm α} (h₁ : S.Subsupport T) (h₂ : S.Subsupport (π T)) :
          π S = S
          theorem ConNF.smul_eq_smul_of_le [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} {π₁ π₂ : ConNF.StrPerm α} (h : S T) (h₂ : π₁ T = π₂ T) :
          π₁ S = π₂ S
          theorem ConNF.smul_eq_of_le [ConNF.Params] {α : ConNF.TypeIndex} {S T : ConNF.Support α} {π : ConNF.StrPerm α} (h : S T) (h₂ : π T = T) :
          π S = S