Documentation

Mathlib.Algebra.Group.Subgroup.Ker

Kernel and range of group homomorphisms #

We define and prove results about the kernel and range of group homomorphisms.

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

def MonoidHom.range {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :

The range of a monoid homomorphism from a group is a subgroup.

Equations
Instances For
    def AddMonoidHom.range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :

    The range of an AddMonoidHom from an AddGroup is an AddSubgroup.

    Equations
    Instances For
      @[simp]
      theorem MonoidHom.coe_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
      f.range = Set.range f
      @[simp]
      theorem AddMonoidHom.coe_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
      f.range = Set.range f
      @[simp]
      theorem MonoidHom.mem_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {y : N} :
      y f.range ∃ (x : G), f x = y
      @[simp]
      theorem AddMonoidHom.mem_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {y : N} :
      y f.range ∃ (x : G), f x = y
      theorem MonoidHom.range_eq_map {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
      f.range = Subgroup.map f
      theorem AddMonoidHom.range_eq_map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
      theorem MonoidHom.range_isCommutative {G : Type u_7} [CommGroup G] {N : Type u_8} [Group N] (f : G →* N) :
      f.range.IsCommutative
      theorem AddMonoidHom.range_isCommutative {G : Type u_7} [AddCommGroup G] {N : Type u_8} [AddGroup N] (f : G →+ N) :
      f.range.IsCommutative
      @[simp]
      theorem MonoidHom.restrict_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] (K : Subgroup G) (f : G →* N) :
      (f.restrict K).range = Subgroup.map f K
      @[simp]
      theorem AddMonoidHom.restrict_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G →+ N) :
      (f.restrict K).range = AddSubgroup.map f K
      def MonoidHom.rangeRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
      G →* f.range

      The canonical surjective group homomorphism G →* f(G) induced by a group homomorphism G →* N.

      Equations
      • f.rangeRestrict = f.codRestrict f.range
      Instances For
        def AddMonoidHom.rangeRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
        G →+ f.range

        The canonical surjective AddGroup homomorphism G →+ f(G) induced by a group homomorphism G →+ N.

        Equations
        • f.rangeRestrict = f.codRestrict f.range
        Instances For
          @[simp]
          theorem MonoidHom.coe_rangeRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (g : G) :
          (f.rangeRestrict g) = f g
          @[simp]
          theorem AddMonoidHom.coe_rangeRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (g : G) :
          (f.rangeRestrict g) = f g
          theorem MonoidHom.coe_comp_rangeRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          Subtype.val f.rangeRestrict = f
          theorem AddMonoidHom.coe_comp_rangeRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          Subtype.val f.rangeRestrict = f
          theorem MonoidHom.subtype_comp_rangeRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          f.range.subtype.comp f.rangeRestrict = f
          theorem AddMonoidHom.subtype_comp_rangeRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          f.range.subtype.comp f.rangeRestrict = f
          theorem MonoidHom.rangeRestrict_surjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          Function.Surjective f.rangeRestrict
          theorem AddMonoidHom.rangeRestrict_surjective {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          Function.Surjective f.rangeRestrict
          @[simp]
          theorem MonoidHom.rangeRestrict_injective_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} :
          Function.Injective f.rangeRestrict Function.Injective f
          @[simp]
          theorem AddMonoidHom.rangeRestrict_injective_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} :
          Function.Injective f.rangeRestrict Function.Injective f
          theorem MonoidHom.map_range {G : Type u_1} [Group G] {N : Type u_5} {P : Type u_6} [Group N] [Group P] (g : N →* P) (f : G →* N) :
          Subgroup.map g f.range = (g.comp f).range
          theorem AddMonoidHom.map_range {G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N →+ P) (f : G →+ N) :
          AddSubgroup.map g f.range = (g.comp f).range
          theorem MonoidHom.range_comp {G : Type u_1} [Group G] {N : Type u_5} {P : Type u_6} [Group N] [Group P] (g : N →* P) (f : G →* N) :
          (g.comp f).range = Subgroup.map g f.range
          theorem AddMonoidHom.range_comp {G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N →+ P) (f : G →+ N) :
          (g.comp f).range = AddSubgroup.map g f.range
          theorem MonoidHom.range_eq_top {G : Type u_1} [Group G] {N : Type u_7} [Group N] {f : G →* N} :
          theorem AddMonoidHom.range_eq_top {G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] {f : G →+ N} :
          @[deprecated MonoidHom.range_eq_top]
          theorem MonoidHom.range_top_iff_surjective {G : Type u_1} [Group G] {N : Type u_7} [Group N] {f : G →* N} :

          Alias of MonoidHom.range_eq_top.

          @[simp]
          theorem MonoidHom.range_eq_top_of_surjective {G : Type u_1} [Group G] {N : Type u_7} [Group N] (f : G →* N) (hf : Function.Surjective f) :
          f.range =

          The range of a surjective monoid homomorphism is the whole of the codomain.

          @[simp]
          theorem AddMonoidHom.range_eq_top_of_surjective {G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G →+ N) (hf : Function.Surjective f) :
          f.range =

          The range of a surjective AddMonoid homomorphism is the whole of the codomain.

          @[deprecated MonoidHom.range_eq_top_of_surjective]
          theorem MonoidHom.range_top_of_surjective {G : Type u_1} [Group G] {N : Type u_7} [Group N] (f : G →* N) (hf : Function.Surjective f) :
          f.range =

          Alias of MonoidHom.range_eq_top_of_surjective.


          The range of a surjective monoid homomorphism is the whole of the codomain.

          @[simp]
          theorem MonoidHom.range_one {G : Type u_1} [Group G] {N : Type u_5} [Group N] :
          @[simp]
          theorem AddMonoidHom.range_zero {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] :
          @[simp]
          theorem Subgroup.range_subtype {G : Type u_1} [Group G] (H : Subgroup G) :
          H.subtype.range = H
          @[simp]
          theorem AddSubgroup.range_subtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
          H.subtype.range = H
          @[deprecated Subgroup.range_subtype]
          theorem Subgroup.subtype_range {G : Type u_1} [Group G] (H : Subgroup G) :
          H.subtype.range = H

          Alias of Subgroup.range_subtype.

          @[deprecated AddSubgroup.range_subtype]
          theorem AddSubgroup.subtype_range {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
          H.subtype.range = H
          @[simp]
          theorem Subgroup.inclusion_range {G : Type u_1} [Group G] {H K : Subgroup G} (h_le : H K) :
          (Subgroup.inclusion h_le).range = H.subgroupOf K
          @[simp]
          theorem AddSubgroup.inclusion_range {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h_le : H K) :
          (AddSubgroup.inclusion h_le).range = H.addSubgroupOf K
          theorem MonoidHom.subgroupOf_range_eq_of_le {G₁ : Type u_7} {G₂ : Type u_8} [Group G₁] [Group G₂] {K : Subgroup G₂} (f : G₁ →* G₂) (h : f.range K) :
          f.range.subgroupOf K = (f.codRestrict K ).range
          theorem AddMonoidHom.addSubgroupOf_range_eq_of_le {G₁ : Type u_7} {G₂ : Type u_8} [AddGroup G₁] [AddGroup G₂] {K : AddSubgroup G₂} (f : G₁ →+ G₂) (h : f.range K) :
          f.range.addSubgroupOf K = (f.codRestrict K ).range
          def MonoidHom.ofLeftInverse {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {g : N →* G} (h : Function.LeftInverse g f) :
          G ≃* f.range

          Computable alternative to MonoidHom.ofInjective.

          Equations
          • MonoidHom.ofLeftInverse h = { toFun := f.rangeRestrict, invFun := g f.range.subtype, left_inv := h, right_inv := , map_mul' := }
          Instances For
            def AddMonoidHom.ofLeftInverse {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {g : N →+ G} (h : Function.LeftInverse g f) :
            G ≃+ f.range

            Computable alternative to AddMonoidHom.ofInjective.

            Equations
            • AddMonoidHom.ofLeftInverse h = { toFun := f.rangeRestrict, invFun := g f.range.subtype, left_inv := h, right_inv := , map_add' := }
            Instances For
              @[simp]
              theorem MonoidHom.ofLeftInverse_apply {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {g : N →* G} (h : Function.LeftInverse g f) (x : G) :
              ((MonoidHom.ofLeftInverse h) x) = f x
              @[simp]
              theorem AddMonoidHom.ofLeftInverse_apply {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {g : N →+ G} (h : Function.LeftInverse g f) (x : G) :
              @[simp]
              theorem MonoidHom.ofLeftInverse_symm_apply {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {g : N →* G} (h : Function.LeftInverse g f) (x : f.range) :
              (MonoidHom.ofLeftInverse h).symm x = g x
              @[simp]
              theorem AddMonoidHom.ofLeftInverse_symm_apply {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {g : N →+ G} (h : Function.LeftInverse g f) (x : f.range) :
              (AddMonoidHom.ofLeftInverse h).symm x = g x
              noncomputable def MonoidHom.ofInjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (hf : Function.Injective f) :
              G ≃* f.range

              The range of an injective group homomorphism is isomorphic to its domain.

              Equations
              Instances For
                noncomputable def AddMonoidHom.ofInjective {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} (hf : Function.Injective f) :
                G ≃+ f.range

                The range of an injective additive group homomorphism is isomorphic to its domain.

                Equations
                Instances For
                  theorem MonoidHom.ofInjective_apply {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (hf : Function.Injective f) {x : G} :
                  ((MonoidHom.ofInjective hf) x) = f x
                  theorem AddMonoidHom.ofInjective_apply {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} (hf : Function.Injective f) {x : G} :
                  ((AddMonoidHom.ofInjective hf) x) = f x
                  @[simp]
                  theorem MonoidHom.apply_ofInjective_symm {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (hf : Function.Injective f) (x : f.range) :
                  f ((MonoidHom.ofInjective hf).symm x) = x
                  @[simp]
                  theorem AddMonoidHom.apply_ofInjective_symm {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} (hf : Function.Injective f) (x : f.range) :
                  f ((AddMonoidHom.ofInjective hf).symm x) = x
                  @[simp]
                  theorem MonoidHom.coe_toAdditive_range {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') :
                  (MonoidHom.toAdditive f).range = Subgroup.toAddSubgroup f.range
                  @[simp]
                  theorem MonoidHom.coe_toMultiplicative_range {A : Type u_7} {A' : Type u_8} [AddGroup A] [AddGroup A'] (f : A →+ A') :
                  (AddMonoidHom.toMultiplicative f).range = AddSubgroup.toSubgroup f.range
                  def MonoidHom.ker {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] (f : G →* M) :

                  The multiplicative kernel of a monoid homomorphism is the subgroup of elements x : G such that f x = 1

                  Equations
                  Instances For
                    def AddMonoidHom.ker {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G →+ M) :

                    The additive kernel of an AddMonoid homomorphism is the AddSubgroup of elements such that f x = 0

                    Equations
                    Instances For
                      @[simp]
                      theorem MonoidHom.mem_ker {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] {f : G →* M} {x : G} :
                      x f.ker f x = 1
                      @[simp]
                      theorem AddMonoidHom.mem_ker {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] {f : G →+ M} {x : G} :
                      x f.ker f x = 0
                      theorem MonoidHom.div_mem_ker_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) {x y : G} :
                      x / y f.ker f x = f y
                      theorem AddMonoidHom.sub_mem_ker_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) {x y : G} :
                      x - y f.ker f x = f y
                      theorem MonoidHom.coe_ker {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] (f : G →* M) :
                      f.ker = f ⁻¹' {1}
                      theorem AddMonoidHom.coe_ker {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G →+ M) :
                      f.ker = f ⁻¹' {0}
                      @[simp]
                      theorem MonoidHom.ker_toHomUnits {G : Type u_1} [Group G] {M : Type u_8} [Monoid M] (f : G →* M) :
                      f.toHomUnits.ker = f.ker
                      @[simp]
                      theorem AddMonoidHom.ker_toHomAddUnits {G : Type u_1} [AddGroup G] {M : Type u_8} [AddMonoid M] (f : G →+ M) :
                      f.toHomAddUnits.ker = f.ker
                      theorem MonoidHom.eq_iff {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] (f : G →* M) {x y : G} :
                      f x = f y y⁻¹ * x f.ker
                      theorem AddMonoidHom.eq_iff {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G →+ M) {x y : G} :
                      f x = f y -y + x f.ker
                      instance MonoidHom.decidableMemKer {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] [DecidableEq M] (f : G →* M) :
                      DecidablePred fun (x : G) => x f.ker
                      Equations
                      instance AddMonoidHom.decidableMemKer {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] [DecidableEq M] (f : G →+ M) :
                      DecidablePred fun (x : G) => x f.ker
                      Equations
                      theorem MonoidHom.comap_ker {G : Type u_1} [Group G] {N : Type u_5} {P : Type u_6} [Group N] [Group P] (g : N →* P) (f : G →* N) :
                      Subgroup.comap f g.ker = (g.comp f).ker
                      theorem AddMonoidHom.comap_ker {G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N →+ P) (f : G →+ N) :
                      AddSubgroup.comap f g.ker = (g.comp f).ker
                      @[simp]
                      theorem MonoidHom.comap_bot {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
                      @[simp]
                      theorem AddMonoidHom.comap_bot {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
                      @[simp]
                      theorem MonoidHom.ker_restrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (K : Subgroup G) (f : G →* N) :
                      (f.restrict K).ker = f.ker.subgroupOf K
                      @[simp]
                      theorem AddMonoidHom.ker_restrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G →+ N) :
                      (f.restrict K).ker = f.ker.addSubgroupOf K
                      @[simp]
                      theorem MonoidHom.ker_codRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] {S : Type u_8} [SetLike S N] [SubmonoidClass S N] (f : G →* N) (s : S) (h : ∀ (x : G), f x s) :
                      (f.codRestrict s h).ker = f.ker
                      @[simp]
                      theorem AddMonoidHom.ker_codRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {S : Type u_8} [SetLike S N] [AddSubmonoidClass S N] (f : G →+ N) (s : S) (h : ∀ (x : G), f x s) :
                      (f.codRestrict s h).ker = f.ker
                      @[simp]
                      theorem MonoidHom.ker_rangeRestrict {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
                      f.rangeRestrict.ker = f.ker
                      @[simp]
                      theorem AddMonoidHom.ker_rangeRestrict {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
                      f.rangeRestrict.ker = f.ker
                      @[simp]
                      theorem MonoidHom.ker_one {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] :
                      @[simp]
                      theorem AddMonoidHom.ker_zero {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] :
                      @[simp]
                      theorem MonoidHom.ker_id {G : Type u_1} [Group G] :
                      @[simp]
                      theorem AddMonoidHom.ker_id {G : Type u_1} [AddGroup G] :
                      theorem MonoidHom.ker_eq_bot_iff {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] (f : G →* M) :
                      theorem AddMonoidHom.ker_eq_bot_iff {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G →+ M) :
                      @[simp]
                      theorem Subgroup.ker_subtype {G : Type u_1} [Group G] (H : Subgroup G) :
                      H.subtype.ker =
                      @[simp]
                      theorem AddSubgroup.ker_subtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                      H.subtype.ker =
                      @[simp]
                      theorem Subgroup.ker_inclusion {G : Type u_1} [Group G] {H K : Subgroup G} (h : H K) :
                      @[simp]
                      theorem AddSubgroup.ker_inclusion {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H K) :
                      theorem MonoidHom.ker_prod {G : Type u_1} [Group G] {M : Type u_8} {N : Type u_9} [MulOneClass M] [MulOneClass N] (f : G →* M) (g : G →* N) :
                      (f.prod g).ker = f.ker g.ker
                      theorem AddMonoidHom.ker_sum {G : Type u_1} [AddGroup G] {M : Type u_8} {N : Type u_9} [AddZeroClass M] [AddZeroClass N] (f : G →+ M) (g : G →+ N) :
                      (f.prod g).ker = f.ker g.ker
                      theorem MonoidHom.range_le_ker_iff {G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [Group G] [Group G'] [Group G''] (f : G →* G') (g : G' →* G'') :
                      f.range g.ker g.comp f = 1
                      theorem AddMonoidHom.range_le_ker_iff {G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [AddGroup G] [AddGroup G'] [AddGroup G''] (f : G →+ G') (g : G' →+ G'') :
                      f.range g.ker g.comp f = 0
                      theorem MonoidHom.normal_ker {G : Type u_1} [Group G] {M : Type u_7} [MulOneClass M] (f : G →* M) :
                      f.ker.Normal
                      theorem AddMonoidHom.normal_ker {G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G →+ M) :
                      f.ker.Normal
                      @[simp]
                      theorem MonoidHom.coe_toAdditive_ker {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') :
                      (MonoidHom.toAdditive f).ker = Subgroup.toAddSubgroup f.ker
                      @[simp]
                      theorem MonoidHom.coe_toMultiplicative_ker {A : Type u_8} {A' : Type u_9} [AddGroup A] [AddGroup A'] (f : A →+ A') :
                      (AddMonoidHom.toMultiplicative f).ker = AddSubgroup.toSubgroup f.ker
                      def MonoidHom.eqLocus {G : Type u_1} [Group G] {M : Type u_7} [Monoid M] (f g : G →* M) :

                      The subgroup of elements x : G such that f x = g x

                      Equations
                      • f.eqLocus g = { toSubmonoid := f.eqLocusM g, inv_mem' := }
                      Instances For
                        def AddMonoidHom.eqLocus {G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] (f g : G →+ M) :

                        The additive subgroup of elements x : G such that f x = g x

                        Equations
                        • f.eqLocus g = { toAddSubmonoid := f.eqLocusM g, neg_mem' := }
                        Instances For
                          @[simp]
                          theorem MonoidHom.eqLocus_same {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
                          f.eqLocus f =
                          @[simp]
                          theorem AddMonoidHom.eqLocus_same {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
                          f.eqLocus f =
                          theorem MonoidHom.eqOn_closure {G : Type u_1} [Group G] {M : Type u_7} [Monoid M] {f g : G →* M} {s : Set G} (h : Set.EqOn (⇑f) (⇑g) s) :
                          Set.EqOn f g (Subgroup.closure s)

                          If two monoid homomorphisms are equal on a set, then they are equal on its subgroup closure.

                          theorem AddMonoidHom.eqOn_closure {G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G →+ M} {s : Set G} (h : Set.EqOn (⇑f) (⇑g) s) :
                          Set.EqOn f g (AddSubgroup.closure s)

                          If two monoid homomorphisms are equal on a set, then they are equal on its subgroup closure.

                          theorem MonoidHom.eq_of_eqOn_top {G : Type u_1} [Group G] {M : Type u_7} [Monoid M] {f g : G →* M} (h : Set.EqOn f g ) :
                          f = g
                          theorem AddMonoidHom.eq_of_eqOn_top {G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G →+ M} (h : Set.EqOn f g ) :
                          f = g
                          theorem MonoidHom.eq_of_eqOn_dense {G : Type u_1} [Group G] {M : Type u_7} [Monoid M] {s : Set G} (hs : Subgroup.closure s = ) {f g : G →* M} (h : Set.EqOn (⇑f) (⇑g) s) :
                          f = g
                          theorem AddMonoidHom.eq_of_eqOn_dense {G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {s : Set G} (hs : AddSubgroup.closure s = ) {f g : G →+ M} (h : Set.EqOn (⇑f) (⇑g) s) :
                          f = g
                          theorem Subgroup.map_eq_bot_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) {f : G →* N} :
                          Subgroup.map f H = H f.ker
                          theorem AddSubgroup.map_eq_bot_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G →+ N} :
                          theorem Subgroup.map_eq_bot_iff_of_injective {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) {f : G →* N} (hf : Function.Injective f) :
                          theorem AddSubgroup.map_eq_bot_iff_of_injective {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G →+ N} (hf : Function.Injective f) :
                          theorem Subgroup.map_le_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup G) :
                          Subgroup.map f H f.range
                          theorem AddSubgroup.map_le_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup G) :
                          AddSubgroup.map f H f.range
                          theorem Subgroup.map_subtype_le {G : Type u_1} [Group G] {H : Subgroup G} (K : Subgroup H) :
                          Subgroup.map H.subtype K H
                          theorem AddSubgroup.map_subtype_le {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (K : AddSubgroup H) :
                          AddSubgroup.map H.subtype K H
                          theorem Subgroup.ker_le_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup N) :
                          theorem AddSubgroup.ker_le_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup N) :
                          theorem Subgroup.map_comap_eq {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup N) :
                          Subgroup.map f (Subgroup.comap f H) = f.range H
                          theorem AddSubgroup.map_comap_eq {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup N) :
                          theorem Subgroup.comap_map_eq {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup G) :
                          theorem AddSubgroup.comap_map_eq {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup G) :
                          theorem Subgroup.map_comap_eq_self {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H : Subgroup N} (h : H f.range) :
                          theorem AddSubgroup.map_comap_eq_self {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H : AddSubgroup N} (h : H f.range) :
                          theorem Subgroup.map_comap_eq_self_of_surjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (h : Function.Surjective f) (H : Subgroup N) :
                          theorem Subgroup.comap_le_comap_of_le_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K L : Subgroup N} (hf : K f.range) :
                          theorem AddSubgroup.comap_le_comap_of_le_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {K L : AddSubgroup N} (hf : K f.range) :
                          theorem Subgroup.comap_le_comap_of_surjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K L : Subgroup N} (hf : Function.Surjective f) :
                          theorem Subgroup.comap_lt_comap_of_surjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K L : Subgroup N} (hf : Function.Surjective f) :
                          theorem Subgroup.comap_injective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (h : Function.Surjective f) :
                          theorem Subgroup.comap_map_eq_self {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H : Subgroup G} (h : f.ker H) :
                          theorem AddSubgroup.comap_map_eq_self {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H : AddSubgroup G} (h : f.ker H) :
                          theorem Subgroup.comap_map_eq_self_of_injective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (h : Function.Injective f) (H : Subgroup G) :
                          theorem Subgroup.map_le_map_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H K : Subgroup G} :
                          theorem AddSubgroup.map_le_map_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H K : AddSubgroup G} :
                          theorem Subgroup.map_le_map_iff' {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H K : Subgroup G} :
                          Subgroup.map f H Subgroup.map f K H f.ker K f.ker
                          theorem AddSubgroup.map_le_map_iff' {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H K : AddSubgroup G} :
                          AddSubgroup.map f H AddSubgroup.map f K H f.ker K f.ker
                          theorem Subgroup.map_eq_map_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H K : Subgroup G} :
                          Subgroup.map f H = Subgroup.map f K H f.ker = K f.ker
                          theorem AddSubgroup.map_eq_map_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H K : AddSubgroup G} :
                          AddSubgroup.map f H = AddSubgroup.map f K H f.ker = K f.ker
                          theorem Subgroup.map_eq_range_iff {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {H : Subgroup G} :
                          Subgroup.map f H = f.range Codisjoint H f.ker
                          theorem AddSubgroup.map_eq_range_iff {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {H : AddSubgroup G} :
                          AddSubgroup.map f H = f.range Codisjoint H f.ker
                          theorem Subgroup.map_le_map_iff_of_injective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (hf : Function.Injective f) {H K : Subgroup G} :
                          @[simp]
                          theorem Subgroup.map_subtype_le_map_subtype {G : Type u_1} [Group G] {G' : Subgroup G} {H K : Subgroup G'} :
                          Subgroup.map G'.subtype H Subgroup.map G'.subtype K H K
                          @[simp]
                          theorem AddSubgroup.map_subtype_le_map_subtype {G : Type u_1} [AddGroup G] {G' : AddSubgroup G} {H K : AddSubgroup G'} :
                          AddSubgroup.map G'.subtype H AddSubgroup.map G'.subtype K H K
                          theorem Subgroup.map_injective {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (h : Function.Injective f) :
                          theorem Subgroup.map_injective_of_ker_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) {H K : Subgroup G} (hH : f.ker H) (hK : f.ker K) (hf : Subgroup.map f H = Subgroup.map f K) :
                          H = K

                          Given f(A) = f(B), ker f ≤ A, and ker f ≤ B, deduce that A = B.

                          theorem AddSubgroup.map_injective_of_ker_le {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) {H K : AddSubgroup G} (hH : f.ker H) (hK : f.ker K) (hf : AddSubgroup.map f H = AddSubgroup.map f K) :
                          H = K

                          Given f(A) = f(B), ker f ≤ A, and ker f ≤ B, deduce that A = B.

                          theorem Subgroup.comap_sup_eq_of_le_range {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) {H K : Subgroup N} (hH : H f.range) (hK : K f.range) :
                          theorem AddSubgroup.comap_sup_eq_of_le_range {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) {H K : AddSubgroup N} (hH : H f.range) (hK : K f.range) :
                          theorem Subgroup.comap_sup_eq {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H K : Subgroup N) (hf : Function.Surjective f) :
                          theorem AddSubgroup.comap_sup_eq {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H K : AddSubgroup N) (hf : Function.Surjective f) :
                          theorem Subgroup.sup_subgroupOf_eq {G : Type u_1} [Group G] {H K L : Subgroup G} (hH : H L) (hK : K L) :
                          H.subgroupOf L K.subgroupOf L = (H K).subgroupOf L
                          theorem AddSubgroup.sup_addSubgroupOf_eq {G : Type u_1} [AddGroup G] {H K L : AddSubgroup G} (hH : H L) (hK : K L) :
                          H.addSubgroupOf L K.addSubgroupOf L = (H K).addSubgroupOf L
                          theorem Subgroup.codisjoint_subgroupOf_sup {G : Type u_1} [Group G] (H K : Subgroup G) :
                          Codisjoint (H.subgroupOf (H K)) (K.subgroupOf (H K))
                          theorem AddSubgroup.codisjoint_addSubgroupOf_sup {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                          Codisjoint (H.addSubgroupOf (H K)) (K.addSubgroupOf (H K))
                          theorem Subgroup.subgroupOf_sup {G : Type u_1} [Group G] (A A' B : Subgroup G) (hA : A B) (hA' : A' B) :
                          (A A').subgroupOf B = A.subgroupOf B A'.subgroupOf B
                          theorem AddSubgroup.addSubgroupOf_sup {G : Type u_1} [AddGroup G] (A A' B : AddSubgroup G) (hA : A B) (hA' : A' B) :
                          (A A').addSubgroupOf B = A.addSubgroupOf B A'.addSubgroupOf B