Documentation

Mathlib.Algebra.Ring.Subring.Defs

Subrings #

Let R be a ring. This file defines the "bundled" subring type Subring R, a type whose terms correspond to subrings of R. This is the preferred way to talk about subrings in mathlib. Unbundled subrings (s : Set R and IsSubring s) are not in this file, and they will ultimately be deprecated.

We prove that subrings are a complete lattice, and that you can map (pushforward) and comap (pull back) them along ring homomorphisms.

We define the closure construction from Set R to Subring R, sending a subset of R to the subring it generates, and prove that it is a Galois insertion.

Main definitions #

Notation used here:

(R : Type u) [Ring R] (S : Type u) [Ring S] (f g : R →+* S) (A : Subring R) (B : Subring S) (s : Set R)

Implementation notes #

A subring is implemented as a subsemiring which is also an additive subgroup. The initial PR was as a submonoid which is also an additive subgroup.

Lattice inclusion (e.g. and ) is used rather than set notation ( and ), although is defined as membership of a subring's underlying set.

Tags #

subring, subrings

class SubringClass (S : Type u_1) (R : outParam (Type u)) [Ring R] [SetLike S R] extends SubsemiringClass S R, NegMemClass S R :

SubringClass S R states that S is a type of subsets s ⊆ R that are both a multiplicative submonoid and an additive subgroup.

Instances
    theorem SubringClass.addSubgroupClass (S : Type u_1) (R : Type u) [SetLike S R] [Ring R] [h : SubringClass S R] :
    theorem intCast_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n s
    @[deprecated intCast_mem]
    theorem coe_int_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n s

    Alias of intCast_mem.

    @[instance 75]
    instance SubringClass.toHasIntCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    IntCast s
    Equations
    @[instance 75]
    instance SubringClass.toRing {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    Ring s

    A subring of a ring inherits a ring structure

    Equations
    @[instance 75]
    instance SubringClass.toCommRing {S : Type v} (s : S) {R : Type u_1} [CommRing R] [SetLike S R] [SubringClass S R] :

    A subring of a CommRing is a CommRing.

    Equations
    theorem SubringClass.instIsDomainSubtypeMem {S : Type v} (s : S) {R : Type u_1} [Ring R] [IsDomain R] [SetLike S R] [SubringClass S R] :

    A subring of a domain is a domain.

    def SubringClass.subtype {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    s →+* R

    The natural ring hom from a subring of ring R to R.

    Equations
    • SubringClass.subtype s = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
    Instances For
      @[simp]
      theorem SubringClass.coeSubtype {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
      (SubringClass.subtype s) = Subtype.val
      @[simp]
      theorem SubringClass.coe_natCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
      n = n
      @[simp]
      theorem SubringClass.coe_intCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
      n = n
      structure Subring (R : Type u) [Ring R] extends Subsemiring R, AddSubgroup R :

      Subring R is the type of subrings of R. A subring of R is a subset s that is a multiplicative submonoid and an additive subgroup. Note in particular that it shares the same 0 and 1 as R.

      Instances For
        instance Subring.instSetLike {R : Type u} [Ring R] :
        Equations
        • Subring.instSetLike = { coe := fun (s : Subring R) => s.carrier, coe_injective' := }
        @[simp]
        theorem Subring.mem_toSubsemiring {R : Type u} [Ring R] {s : Subring R} {x : R} :
        x s.toSubsemiring x s
        theorem Subring.mem_carrier {R : Type u} [Ring R] {s : Subring R} {x : R} :
        x s.carrier x s
        @[simp]
        theorem Subring.mem_mk {R : Type u} [Ring R] {S : Subsemiring R} {x : R} (h : ∀ {x : R}, x S.carrier-x S.carrier) :
        x { toSubsemiring := S, neg_mem' := h } x S
        @[simp]
        theorem Subring.coe_set_mk {R : Type u} [Ring R] (S : Subsemiring R) (h : ∀ {x : R}, x S.carrier-x S.carrier) :
        { toSubsemiring := S, neg_mem' := h } = S
        @[simp]
        theorem Subring.mk_le_mk {R : Type u} [Ring R] {S S' : Subsemiring R} (h₁ : ∀ {x : R}, x S.carrier-x S.carrier) (h₂ : ∀ {x : R}, x S'.carrier-x S'.carrier) :
        { toSubsemiring := S, neg_mem' := h₁ } { toSubsemiring := S', neg_mem' := h₂ } S S'
        theorem Subring.ext {R : Type u} [Ring R] {S T : Subring R} (h : ∀ (x : R), x S x T) :
        S = T

        Two subrings are equal if they have the same elements.

        def Subring.copy {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :

        Copy of a subring with a new carrier equal to the old one. Useful to fix definitional equalities.

        Equations
        • S.copy s hs = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
        Instances For
          @[simp]
          theorem Subring.coe_copy {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :
          (S.copy s hs) = s
          @[simp]
          theorem Subring.copy_toSubsemiring {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :
          (S.copy s hs).toSubsemiring = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
          theorem Subring.copy_eq {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :
          S.copy s hs = S
          theorem Subring.toSubsemiring_injective {R : Type u} [Ring R] :
          Function.Injective Subring.toSubsemiring
          theorem Subring.toAddSubgroup_injective {R : Type u} [Ring R] :
          Function.Injective Subring.toAddSubgroup
          theorem Subring.toSubmonoid_injective {R : Type u} [Ring R] :
          Function.Injective fun (s : Subring R) => s.toSubmonoid
          def Subring.mk' {R : Type u} [Ring R] (s : Set R) (sm : Submonoid R) (sa : AddSubgroup R) (hm : sm = s) (ha : sa = s) :

          Construct a Subring R from a set s, a submonoid sm, and an additive subgroup sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

          Equations
          • Subring.mk' s sm sa hm ha = { toSubmonoid := sm.copy s , add_mem' := , zero_mem' := , neg_mem' := }
          Instances For
            @[simp]
            theorem Subring.coe_mk' {R : Type u} [Ring R] (s : Set R) (sm : Submonoid R) (sa : AddSubgroup R) (hm : sm = s) (ha : sa = s) :
            (Subring.mk' s sm sa hm ha) = s
            @[simp]
            theorem Subring.mem_mk' {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) {x : R} :
            x Subring.mk' s sm sa hm ha x s
            @[simp]
            theorem Subring.mk'_toSubmonoid {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
            (Subring.mk' s sm sa hm ha).toSubmonoid = sm
            @[simp]
            theorem Subring.mk'_toAddSubgroup {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
            (Subring.mk' s sm sa hm ha).toAddSubgroup = sa
            def Subsemiring.toSubring {R : Type u} [Ring R] (s : Subsemiring R) (hneg : -1 s) :

            A Subsemiring containing -1 is a Subring.

            Equations
            • s.toSubring hneg = { toSubsemiring := s, neg_mem' := }
            Instances For
              @[simp]
              theorem Subsemiring.toSubring_toSubsemiring {R : Type u} [Ring R] (s : Subsemiring R) (hneg : -1 s) :
              (s.toSubring hneg).toSubsemiring = s
              theorem Subring.one_mem {R : Type u} [Ring R] (s : Subring R) :
              1 s

              A subring contains the ring's 1.

              theorem Subring.zero_mem {R : Type u} [Ring R] (s : Subring R) :
              0 s

              A subring contains the ring's 0.

              theorem Subring.mul_mem {R : Type u} [Ring R] (s : Subring R) {x y : R} :
              x sy sx * y s

              A subring is closed under multiplication.

              theorem Subring.add_mem {R : Type u} [Ring R] (s : Subring R) {x y : R} :
              x sy sx + y s

              A subring is closed under addition.

              theorem Subring.neg_mem {R : Type u} [Ring R] (s : Subring R) {x : R} :
              x s-x s

              A subring is closed under negation.

              theorem Subring.sub_mem {R : Type u} [Ring R] (s : Subring R) {x y : R} (hx : x s) (hy : y s) :
              x - y s

              A subring is closed under subtraction

              instance Subring.toRing {R : Type u} [Ring R] (s : Subring R) :
              Ring s

              A subring of a ring inherits a ring structure

              Equations
              theorem Subring.zsmul_mem {R : Type u} [Ring R] (s : Subring R) {x : R} (hx : x s) (n : ) :
              n x s
              theorem Subring.pow_mem {R : Type u} [Ring R] (s : Subring R) {x : R} (hx : x s) (n : ) :
              x ^ n s
              @[simp]
              theorem Subring.coe_add {R : Type u} [Ring R] (s : Subring R) (x y : s) :
              (x + y) = x + y
              @[simp]
              theorem Subring.coe_neg {R : Type u} [Ring R] (s : Subring R) (x : s) :
              (-x) = -x
              @[simp]
              theorem Subring.coe_mul {R : Type u} [Ring R] (s : Subring R) (x y : s) :
              (x * y) = x * y
              @[simp]
              theorem Subring.coe_zero {R : Type u} [Ring R] (s : Subring R) :
              0 = 0
              @[simp]
              theorem Subring.coe_one {R : Type u} [Ring R] (s : Subring R) :
              1 = 1
              @[simp]
              theorem Subring.coe_pow {R : Type u} [Ring R] (s : Subring R) (x : s) (n : ) :
              (x ^ n) = x ^ n
              theorem Subring.coe_eq_zero_iff {R : Type u} [Ring R] (s : Subring R) {x : s} :
              x = 0 x = 0
              instance Subring.toCommRing {R : Type u_1} [CommRing R] (s : Subring R) :

              A subring of a CommRing is a CommRing.

              Equations
              theorem Subring.instNontrivialSubtypeMem {R : Type u_1} [Ring R] [Nontrivial R] (s : Subring R) :

              A subring of a non-trivial ring is non-trivial.

              A subring of a ring with no zero divisors has no zero divisors.

              theorem Subring.instIsDomainSubtypeMem {R : Type u_1} [Ring R] [IsDomain R] (s : Subring R) :

              A subring of a domain is a domain.

              def Subring.subtype {R : Type u} [Ring R] (s : Subring R) :
              s →+* R

              The natural ring hom from a subring of ring R to R.

              Equations
              • s.subtype = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
              Instances For
                @[simp]
                theorem Subring.coeSubtype {R : Type u} [Ring R] (s : Subring R) :
                s.subtype = Subtype.val
                theorem Subring.coe_natCast {R : Type u} [Ring R] (s : Subring R) (n : ) :
                n = n
                theorem Subring.coe_intCast {R : Type u} [Ring R] (s : Subring R) (n : ) :
                n = n

                Partial order #

                @[simp]
                theorem Subring.coe_toSubsemiring {R : Type u} [Ring R] (s : Subring R) :
                s.toSubsemiring = s
                @[simp]
                theorem Subring.mem_toSubmonoid {R : Type u} [Ring R] {s : Subring R} {x : R} :
                x s.toSubmonoid x s
                @[simp]
                theorem Subring.coe_toSubmonoid {R : Type u} [Ring R] (s : Subring R) :
                s.toSubmonoid = s
                @[simp]
                theorem Subring.mem_toAddSubgroup {R : Type u} [Ring R] {s : Subring R} {x : R} :
                x s.toAddSubgroup x s
                @[simp]
                theorem Subring.coe_toAddSubgroup {R : Type u} [Ring R] (s : Subring R) :
                s.toAddSubgroup = s
                theorem AddSubgroup.int_mul_mem {R : Type u} [Ring R] {G : AddSubgroup R} (k : ) {g : R} (h : g G) :
                k * g G