Documentation

Mathlib.Logic.Equiv.Fin

Equivalences for Fin n #

Miscellaneous #

This is currently not very sorted. PRs welcome!

theorem Fin.preimage_apply_01_prod {α : Fin 2Type u} (s : Set (α 0)) (t : Set (α 1)) :
(fun (f : (i : Fin 2) → α i) => (f 0, f 1)) ⁻¹' s ×ˢ t = Set.univ.pi (Fin.cons s (Fin.cons t finZeroElim))
theorem Fin.preimage_apply_01_prod' {α : Type u} (s t : Set α) :
(fun (f : Fin 2α) => (f 0, f 1)) ⁻¹' s ×ˢ t = Set.univ.pi ![s, t]
def prodEquivPiFinTwo (α β : Type u) :
α × β ((i : Fin 2) → ![α, β] i)

A product space α × β is equivalent to the space Π i : Fin 2, γ i, where γ = Fin.cons α (Fin.cons β finZeroElim). See also piFinTwoEquiv and finTwoArrowEquiv.

Equations
Instances For
    @[simp]
    theorem prodEquivPiFinTwo_symm_apply (α β : Type u) :
    (prodEquivPiFinTwo α β).symm = fun (f : (i : Fin 2) → Fin.cons α (Fin.cons β finZeroElim) i) => (f 0, f 1)
    @[simp]
    theorem prodEquivPiFinTwo_apply (α β : Type u) :
    (prodEquivPiFinTwo α β) = fun (p : Fin.cons α (Fin.cons β finZeroElim) 0 × Fin.cons α (Fin.cons β finZeroElim) 1) => Fin.cons p.1 (Fin.cons p.2 finZeroElim)
    def finTwoArrowEquiv (α : Type u_1) :
    (Fin 2α) α × α

    The space of functions Fin 2 → α is equivalent to α × α. See also piFinTwoEquiv and prodEquivPiFinTwo.

    Equations
    Instances For
      @[simp]
      theorem finTwoArrowEquiv_symm_apply (α : Type u_1) :
      (finTwoArrowEquiv α).symm = fun (x : α × α) => ![x.1, x.2]
      @[simp]
      theorem finTwoArrowEquiv_apply (α : Type u_1) :
      (finTwoArrowEquiv α) = (piFinTwoEquiv fun (x : Fin 2) => α).toFun
      def finSuccEquiv' {n : } (i : Fin (n + 1)) :
      Fin (n + 1) Option (Fin n)

      An equivalence that removes i and maps it to none. This is a version of Fin.predAbove that produces Option (Fin n) instead of mapping both i.cast_succ and i.succ to i.

      Equations
      • finSuccEquiv' i = { toFun := i.insertNth none some, invFun := fun (x : Option (Fin n)) => x.casesOn' i i.succAbove, left_inv := , right_inv := }
      Instances For
        @[simp]
        theorem finSuccEquiv'_at {n : } (i : Fin (n + 1)) :
        (finSuccEquiv' i) i = none
        @[simp]
        theorem finSuccEquiv'_succAbove {n : } (i : Fin (n + 1)) (j : Fin n) :
        (finSuccEquiv' i) (i.succAbove j) = some j
        theorem finSuccEquiv'_below {n : } {i : Fin (n + 1)} {m : Fin n} (h : m.castSucc < i) :
        (finSuccEquiv' i) m.castSucc = some m
        theorem finSuccEquiv'_above {n : } {i : Fin (n + 1)} {m : Fin n} (h : i m.castSucc) :
        (finSuccEquiv' i) m.succ = some m
        @[simp]
        theorem finSuccEquiv'_symm_none {n : } (i : Fin (n + 1)) :
        (finSuccEquiv' i).symm none = i
        @[simp]
        theorem finSuccEquiv'_symm_some {n : } (i : Fin (n + 1)) (j : Fin n) :
        (finSuccEquiv' i).symm (some j) = i.succAbove j
        theorem finSuccEquiv'_symm_some_below {n : } {i : Fin (n + 1)} {m : Fin n} (h : m.castSucc < i) :
        (finSuccEquiv' i).symm (some m) = m.castSucc
        theorem finSuccEquiv'_symm_some_above {n : } {i : Fin (n + 1)} {m : Fin n} (h : i m.castSucc) :
        (finSuccEquiv' i).symm (some m) = m.succ
        theorem finSuccEquiv'_symm_coe_below {n : } {i : Fin (n + 1)} {m : Fin n} (h : m.castSucc < i) :
        (finSuccEquiv' i).symm (some m) = m.castSucc
        theorem finSuccEquiv'_symm_coe_above {n : } {i : Fin (n + 1)} {m : Fin n} (h : i m.castSucc) :
        (finSuccEquiv' i).symm (some m) = m.succ
        def finSuccEquiv (n : ) :
        Fin (n + 1) Option (Fin n)

        Equivalence between Fin (n + 1) and Option (Fin n). This is a version of Fin.pred that produces Option (Fin n) instead of requiring a proof that the input is not 0.

        Equations
        Instances For
          @[simp]
          theorem finSuccEquiv_zero {n : } :
          (finSuccEquiv n) 0 = none
          @[simp]
          theorem finSuccEquiv_succ {n : } (m : Fin n) :
          (finSuccEquiv n) m.succ = some m
          @[simp]
          theorem finSuccEquiv_symm_none {n : } :
          (finSuccEquiv n).symm none = 0
          @[simp]
          theorem finSuccEquiv_symm_some {n : } (m : Fin n) :
          (finSuccEquiv n).symm (some m) = m.succ
          theorem finSuccEquiv'_last_apply_castSucc {n : } (i : Fin n) :
          (finSuccEquiv' (Fin.last n)) i.castSucc = some i
          theorem finSuccEquiv'_last_apply {n : } {i : Fin (n + 1)} (h : i Fin.last n) :
          (finSuccEquiv' (Fin.last n)) i = some (i.castLT )
          theorem finSuccEquiv'_ne_last_apply {n : } {i j : Fin (n + 1)} (hi : i Fin.last n) (hj : j i) :
          (finSuccEquiv' i) j = some ((i.castLT ).predAbove j)
          def finSuccAboveEquiv {n : } (p : Fin (n + 1)) :
          Fin n { x : Fin (n + 1) // x p }

          Fin.succAbove as an order isomorphism between Fin n and {x : Fin (n + 1) // x ≠ p}.

          Equations
          Instances For
            theorem finSuccAboveEquiv_apply {n : } (p : Fin (n + 1)) (i : Fin n) :
            (finSuccAboveEquiv p) i = p.succAbove i,
            theorem finSuccAboveEquiv_symm_apply_last {n : } (x : { x : Fin (n + 1) // x Fin.last n }) :
            (finSuccAboveEquiv (Fin.last n)).symm x = (↑x).castLT
            theorem finSuccAboveEquiv_symm_apply_ne_last {n : } {p : Fin (n + 1)} (h : p Fin.last n) (x : { x : Fin (n + 1) // x p }) :
            (finSuccAboveEquiv p).symm x = (p.castLT ).predAbove x
            def finSuccEquivLast {n : } :
            Fin (n + 1) Option (Fin n)

            Equiv between Fin (n + 1) and Option (Fin n) sending Fin.last n to none

            Equations
            Instances For
              @[simp]
              theorem finSuccEquivLast_castSucc {n : } (i : Fin n) :
              finSuccEquivLast i.castSucc = some i
              @[simp]
              theorem finSuccEquivLast_last {n : } :
              finSuccEquivLast (Fin.last n) = none
              @[simp]
              theorem finSuccEquivLast_symm_some {n : } (i : Fin n) :
              finSuccEquivLast.symm (some i) = i.castSucc
              @[simp]
              theorem finSuccEquivLast_symm_none {n : } :
              finSuccEquivLast.symm none = Fin.last n
              @[deprecated Fin.insertNthEquiv]
              def Equiv.piFinSuccAbove {n : } (α : Fin (n + 1)Type u) (i : Fin (n + 1)) :
              ((j : Fin (n + 1)) → α j) α i × ((j : Fin n) → α (i.succAbove j))

              Equivalence between Π j : Fin (n + 1), α j and α i × Π j : Fin n, α (Fin.succAbove i j).

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Equiv.piFinSuccAbove_symm_apply {n : } (α : Fin (n + 1)Type u) (i : Fin (n + 1)) :
                (Equiv.piFinSuccAbove α i).symm = fun (f : α i × ((j : Fin n) → α (i.succAbove j))) => i.insertNth f.1 f.2
                @[simp]
                theorem Equiv.piFinSuccAbove_apply {n : } (α : Fin (n + 1)Type u) (i : Fin (n + 1)) :
                (Equiv.piFinSuccAbove α i) = fun (f : (j : Fin (n + 1)) → α j) => (f i, i.removeNth f)
                @[deprecated Fin.consEquiv]
                def Equiv.piFinSucc (n : ) (β : Type u) :
                (Fin (n + 1)β) β × (Fin nβ)

                Equivalence between Fin (n + 1) → β and β × (Fin n → β).

                Equations
                Instances For
                  @[simp]
                  theorem Equiv.piFinSucc_symm_apply (n : ) (β : Type u) :
                  (Equiv.piFinSucc n β).symm = (Fin.consEquiv fun (x : Fin (n + 1)) => β)
                  @[simp]
                  theorem Equiv.piFinSucc_apply (n : ) (β : Type u) :
                  (Equiv.piFinSucc n β) = (Fin.consEquiv fun (x : Fin (n + 1)) => β).symm
                  def Equiv.embeddingFinSucc (n : ) (ι : Type u_1) :
                  (Fin (n + 1) ι) (e : Fin n ι) × { i : ι // iSet.range e }

                  An embedding e : Fin (n+1) ↪ ι corresponds to an embedding f : Fin n ↪ ι (corresponding the last n coordinates of e) together with a value not taken by f (corresponding to e 0).

                  Equations
                  Instances For
                    @[simp]
                    theorem Equiv.embeddingFinSucc_fst {n : } {ι : Type u_1} (e : Fin (n + 1) ι) :
                    ((Equiv.embeddingFinSucc n ι) e).fst = e Fin.succ
                    @[simp]
                    theorem Equiv.embeddingFinSucc_snd {n : } {ι : Type u_1} (e : Fin (n + 1) ι) :
                    ((Equiv.embeddingFinSucc n ι) e).snd = e 0
                    @[simp]
                    theorem Equiv.coe_embeddingFinSucc_symm {n : } {ι : Type u_1} (f : (e : Fin n ι) × { i : ι // iSet.range e }) :
                    ((Equiv.embeddingFinSucc n ι).symm f) = Fin.cons f.snd f.fst
                    @[deprecated Fin.snocEquiv]
                    def Equiv.piFinCastSucc (n : ) (β : Type u) :
                    (Fin (n + 1)β) β × (Fin nβ)

                    Equivalence between Fin (n + 1) → β and β × (Fin n → β) which separates out the last element of the tuple.

                    Equations
                    Instances For
                      @[simp]
                      theorem Equiv.piFinCastSucc_apply (n : ) (β : Type u) :
                      (Equiv.piFinCastSucc n β) = (Fin.snocEquiv fun (x : Fin (n + 1)) => β).symm
                      @[simp]
                      theorem Equiv.piFinCastSucc_symm_apply (n : ) (β : Type u) :
                      (Equiv.piFinCastSucc n β).symm = (Fin.snocEquiv fun (x : Fin (n + 1)) => β)
                      def finSumFinEquiv {m n : } :
                      Fin m Fin n Fin (m + n)

                      Equivalence between Fin m ⊕ Fin n and Fin (m + n)

                      Equations
                      Instances For
                        @[simp]
                        theorem finSumFinEquiv_apply_left {m n : } (i : Fin m) :
                        finSumFinEquiv (Sum.inl i) = Fin.castAdd n i
                        @[simp]
                        theorem finSumFinEquiv_apply_right {m n : } (i : Fin n) :
                        finSumFinEquiv (Sum.inr i) = Fin.natAdd m i
                        @[simp]
                        theorem finSumFinEquiv_symm_apply_castAdd {m n : } (x : Fin m) :
                        finSumFinEquiv.symm (Fin.castAdd n x) = Sum.inl x
                        @[simp]
                        theorem finSumFinEquiv_symm_apply_natAdd {m n : } (x : Fin n) :
                        finSumFinEquiv.symm (Fin.natAdd m x) = Sum.inr x
                        @[simp]
                        theorem finSumFinEquiv_symm_last {n : } :
                        finSumFinEquiv.symm (Fin.last n) = Sum.inr 0
                        def finAddFlip {m n : } :
                        Fin (m + n) Fin (n + m)

                        The equivalence between Fin (m + n) and Fin (n + m) which rotates by n.

                        Equations
                        Instances For
                          @[simp]
                          theorem finAddFlip_apply_castAdd {m : } (k : Fin m) (n : ) :
                          finAddFlip (Fin.castAdd n k) = Fin.natAdd n k
                          @[simp]
                          theorem finAddFlip_apply_natAdd {n : } (k : Fin n) (m : ) :
                          finAddFlip (Fin.natAdd m k) = Fin.castAdd m k
                          @[simp]
                          theorem finAddFlip_apply_mk_left {m n k : } (h : k < m) (hk : k < m + n := ) (hnk : n + k < n + m := ) :
                          finAddFlip k, hk = n + k, hnk
                          @[simp]
                          theorem finAddFlip_apply_mk_right {m n k : } (h₁ : m k) (h₂ : k < m + n) :
                          finAddFlip k, h₂ = k - m,
                          def finRotate (n : ) :

                          Rotate Fin n one step to the right.

                          Equations
                          Instances For
                            theorem finRotate_succ (n : ) :
                            finRotate (n + 1) = finAddFlip.trans (finCongr )
                            theorem finRotate_of_lt {n k : } (h : k < n) :
                            (finRotate (n + 1)) k, = k + 1,
                            theorem finRotate_last' {n : } :
                            (finRotate (n + 1)) n, = 0,
                            theorem finRotate_last {n : } :
                            (finRotate (n + 1)) (Fin.last n) = 0
                            theorem Fin.snoc_eq_cons_rotate {n : } {α : Type u_1} (v : Fin nα) (a : α) :
                            Fin.snoc v a = fun (i : Fin (n + 1)) => Fin.cons a v ((finRotate (n + 1)) i)
                            @[simp]
                            theorem finRotate_succ_apply {n : } (i : Fin (n + 1)) :
                            (finRotate (n + 1)) i = i + 1
                            theorem finRotate_apply_zero {n : } :
                            (finRotate n.succ) 0 = 1
                            theorem coe_finRotate_of_ne_last {n : } {i : Fin n.succ} (h : i Fin.last n) :
                            ((finRotate (n + 1)) i) = i + 1
                            theorem coe_finRotate {n : } (i : Fin n.succ) :
                            ((finRotate n.succ) i) = if i = Fin.last n then 0 else i + 1
                            def finProdFinEquiv {m n : } :
                            Fin m × Fin n Fin (m * n)

                            Equivalence between Fin m × Fin n and Fin (m * n)

                            Equations
                            • finProdFinEquiv = { toFun := fun (x : Fin m × Fin n) => x.2 + n * x.1, , invFun := fun (x : Fin (m * n)) => (x.divNat, x.modNat), left_inv := , right_inv := }
                            Instances For
                              @[simp]
                              theorem finProdFinEquiv_apply_val {m n : } (x : Fin m × Fin n) :
                              (finProdFinEquiv x) = x.2 + n * x.1
                              @[simp]
                              theorem finProdFinEquiv_symm_apply {m n : } (x : Fin (m * n)) :
                              finProdFinEquiv.symm x = (x.divNat, x.modNat)

                              The equivalence induced by a ↦ (a / n, a % n) for nonzero n. This is like finProdFinEquiv.symm but with m infinite. See Nat.div_mod_unique for a similar propositional statement.

                              Equations
                              • n.divModEquiv = { toFun := fun (a : ) => (a / n, a), invFun := fun (p : × Fin n) => p.1 * n + p.2, left_inv := , right_inv := }
                              Instances For
                                @[simp]
                                theorem Nat.divModEquiv_symm_apply (n : ) [NeZero n] (p : × Fin n) :
                                n.divModEquiv.symm p = p.1 * n + p.2
                                @[simp]
                                theorem Nat.divModEquiv_apply (n : ) [NeZero n] (a : ) :
                                n.divModEquiv a = (a / n, a)

                                The equivalence induced by a ↦ (a / n, a % n) for nonzero n. See Int.ediv_emod_unique for a similar propositional statement.

                                Equations
                                • Int.divModEquiv n = { toFun := fun (a : ) => (a / n, (a.natMod n)), invFun := fun (p : × Fin n) => p.1 * n + p.2, left_inv := , right_inv := }
                                Instances For
                                  @[simp]
                                  theorem Int.divModEquiv_apply (n : ) [NeZero n] (a : ) :
                                  (Int.divModEquiv n) a = (a / n, (a.natMod n))
                                  @[simp]
                                  theorem Int.divModEquiv_symm_apply (n : ) [NeZero n] (p : × Fin n) :
                                  (Int.divModEquiv n).symm p = p.1 * n + p.2
                                  def Fin.castLEquiv {n m : } (h : n m) :
                                  Fin n { i : Fin m // i < n }

                                  Promote a Fin n into a larger Fin m, as a subtype where the underlying values are retained.

                                  This is the Equiv version of Fin.castLE.

                                  Equations
                                  • Fin.castLEquiv h = { toFun := fun (i : Fin n) => Fin.castLE h i, , invFun := fun (i : { i : Fin m // i < n }) => i, , left_inv := , right_inv := }
                                  Instances For
                                    @[simp]
                                    theorem Fin.castLEquiv_apply {n m : } (h : n m) (i : Fin n) :
                                    (Fin.castLEquiv h) i = Fin.castLE h i,
                                    @[simp]
                                    theorem Fin.castLEquiv_symm_apply {n m : } (h : n m) (i : { i : Fin m // i < n }) :
                                    (Fin.castLEquiv h).symm i = i,

                                    Fin 0 is a subsingleton.

                                    Fin 1 is a subsingleton.

                                    def Fin.appendEquiv {α : Type u_1} (m n : ) :
                                    (Fin mα) × (Fin nα) (Fin (m + n)α)

                                    The natural Equiv between (Fin m → α) × (Fin n → α) and Fin (m + n) → α.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem Fin.appendEquiv_apply {α : Type u_1} (m n : ) (fg : (Fin mα) × (Fin nα)) (a✝ : Fin (m + n)) :
                                      (Fin.appendEquiv m n) fg a✝ = Fin.append fg.1 fg.2 a✝
                                      @[simp]
                                      theorem Fin.appendEquiv_symm_apply {α : Type u_1} (m n : ) (f : Fin (m + n)α) :
                                      (Fin.appendEquiv m n).symm f = (fun (i : Fin m) => f (Fin.castAdd n i), fun (i : Fin n) => f (Fin.natAdd m i))