Mathematics in Lean 3
  • 1. Introduction
  • 2. Basics
  • 3. Logic
  • 4. Sets and Functions
  • 5. Number Theory
  • 6. Abstract Algebra
  • 7. Topology
  • 8. Differential Calculus
  • 9. Integration and Measure Theory
  • Index
Mathematics in Lean 3
  • »
  • Mathematics in Lean
  • View page source

Mathematics in Lean

  • 1. Introduction
    • 1.1. Getting Started
    • 1.2. Overview
  • 2. Basics
    • 2.1. Calculating
    • 2.2. Proving Identities in Algebraic Structures
    • 2.3. Using Theorems and Lemmas
    • 2.4. More on Order and Divisibility
    • 2.5. Proving Facts about Algebraic Structures
  • 3. Logic
    • 3.1. Implication and the Universal Quantifier
    • 3.2. The Existential Quantifier
    • 3.3. Negation
    • 3.4. Conjunction and Bi-implication
    • 3.5. Disjunction
    • 3.6. Sequences and Convergence
  • 4. Sets and Functions
    • 4.1. Sets
    • 4.2. Functions
    • 4.3. The Schröder-Bernstein Theorem
  • 5. Number Theory
    • 5.1. Irrational Roots
    • 5.2. Induction and Recursion
    • 5.3. Infinitely Many Primes
  • 6. Abstract Algebra
    • 6.1. Structures
    • 6.2. Algebraic Structures
    • 6.3. Building the Gaussian Integers
  • 7. Topology
    • 7.1. Filters
    • 7.2. Metric spaces
    • 7.3. Topological spaces
  • 8. Differential Calculus
    • 8.1. Elementary Differential Calculus
    • 8.2. Differential Calculus in Normed Spaces
  • 9. Integration and Measure Theory
    • 9.1. Elementary Integration
    • 9.2. Measure Theory
    • 9.3. Integration
Next

© Copyright 2020, Jeremy Avigad, Kevin Buzzard, Robert Y. Lewis, Patrick Massot.

Built with Sphinx using a theme provided by Read the Docs.