A hash set that preserves the order of insertions.
- toArray : Array α
- toHashSet : Std.HashSet α
Instances For
Instances For
instance
Aesop.instInhabitedOrderedHashSet
{a✝ : Type u_1}
{a✝¹ : BEq a✝}
{a✝² : Hashable a✝}
:
Inhabited (OrderedHashSet a✝)
Equations
Equations
- Aesop.OrderedHashSet.emptyWithCapacity n = { toArray := Array.emptyWithCapacity n, toHashSet := Std.HashSet.emptyWithCapacity n }
Instances For
def
Aesop.OrderedHashSet.insert
{α : Type u_1}
[BEq α]
[Hashable α]
(x : α)
(s : OrderedHashSet α)
:
Equations
Instances For
def
Aesop.OrderedHashSet.insertMany
{α : Type u_1}
[BEq α]
[Hashable α]
{ρ : Type u_2}
[ForIn Id ρ α]
(xs : ρ)
(s : OrderedHashSet α)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
Instances For
def
Aesop.OrderedHashSet.contains
{α : Type u_1}
[BEq α]
[Hashable α]
(x : α)
(s : OrderedHashSet α)
:
Equations
Instances For
instance
Aesop.OrderedHashSet.instMembership
{α : Type u_1}
[BEq α]
[Hashable α]
:
Membership α (OrderedHashSet α)
Equations
- Aesop.OrderedHashSet.instMembership = { mem := fun (s : Aesop.OrderedHashSet α) (x : α) => x ∈ s.toHashSet }
instance
Aesop.OrderedHashSet.instDecidableMem
{α : Type u_1}
[BEq α]
[Hashable α]
{x : α}
{s : OrderedHashSet α}
:
Equations
@[specialize #[]]
def
Aesop.OrderedHashSet.foldlM
{α : Type u_1}
[BEq α]
[Hashable α]
{m : Type u_2 → Type u_3}
{β : Type u_2}
[Monad m]
(f : β → α → m β)
(init : β)
(s : OrderedHashSet α)
:
m β
Equations
- Aesop.OrderedHashSet.foldlM f init s = Array.foldlM f init s.toArray
Instances For
def
Aesop.OrderedHashSet.foldl
{α : Type u_1}
[BEq α]
[Hashable α]
{β : Type u_2}
(f : β → α → β)
(init : β)
(s : OrderedHashSet α)
:
β
Equations
- Aesop.OrderedHashSet.foldl f init s = Array.foldl f init s.toArray
Instances For
@[specialize #[]]
def
Aesop.OrderedHashSet.foldrM
{α : Type u_1}
[BEq α]
[Hashable α]
{m : Type u_2 → Type u_3}
{β : Type u_2}
[Monad m]
(f : α → β → m β)
(init : β)
(s : OrderedHashSet α)
:
m β
Equations
- Aesop.OrderedHashSet.foldrM f init s = Array.foldrM f init s.toArray
Instances For
def
Aesop.OrderedHashSet.foldr
{α : Type u_1}
[BEq α]
[Hashable α]
{β : Type u_2}
(f : α → β → β)
(init : β)
(s : OrderedHashSet α)
:
β
Equations
- Aesop.OrderedHashSet.foldr f init s = Array.foldr f init s.toArray
Instances For
instance
Aesop.OrderedHashSet.instForIn
{α : Type u_1}
[BEq α]
[Hashable α]
{m : Type u_2 → Type u_3}
:
ForIn m (OrderedHashSet α) α
Equations
- Aesop.OrderedHashSet.instForIn = { forIn := fun {β : Type ?u.30} [Monad m] (s : Aesop.OrderedHashSet α) (b : β) (f : α → β → m (ForInStep β)) => forIn s.toArray b f }