Hash set lemmas #
This module contains lemmas about Std.Data.HashSet
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[simp]
theorem
Std.HashSet.insert_eq_insert
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
{a : α}
:
theorem
Std.HashSet.contains_of_contains_insert'
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
:
This is a restatement of contains_insert
that is written to exactly match the proof
obligation in the statement of get_insert
.
theorem
Std.HashSet.mem_of_mem_insert'
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
:
This is a restatement of mem_insert
that is written to exactly match the proof obligation
in the statement of get_insert
.
theorem
Std.HashSet.mem_insert_self
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{k : α}
:
@[simp]
theorem
Std.HashSet.containsThenInsert_fst
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
{k : α}
:
@[simp]
theorem
Std.HashSet.containsThenInsert_snd
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
{k : α}
:
theorem
Std.HashSet.distinct_toList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
:
List.Pairwise (fun (a b : α) => (a == b) = false) m.toList
@[simp]
@[simp]
theorem
Std.HashSet.contains_insertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
theorem
Std.HashSet.mem_of_mem_insertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(contains_eq_false : l.contains k = false)
:
k ∈ m.insertMany l → k ∈ m
theorem
Std.HashSet.get?_insertMany_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashSet.get?_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(mem : k ∈ m)
:
theorem
Std.HashSet.get_insertMany_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h : k' ∈ m.insertMany l}
:
theorem
Std.HashSet.get_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(mem : k ∈ m)
{h : k ∈ m.insertMany l}
:
theorem
Std.HashSet.get!_insertMany_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashSet.get!_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List α}
{k : α}
(mem : k ∈ m)
:
theorem
Std.HashSet.getD_insertMany_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.HashSet.getD_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k fallback : α}
(mem : k ∈ m)
:
theorem
Std.HashSet.size_le_size_insertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
theorem
Std.HashSet.size_insertMany_list_le
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.HashSet.isEmpty_insertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : HashSet α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
: