A variant of Chris Hughes' solution for the if normalization challenge. #
In this variant we eschew the use of aesop
, and instead write out the proofs.
(In order to avoid duplicated names with Result.lean
,
we put primes on the declarations in the file.)
@[irreducible]
Normalizes the expression at the same time as assigning all variables in
e
to the literal booleans given by l
Equations
- One or more equations did not get rendered due to their size.
- IfExpr.normalize' l (IfExpr.lit b) = ⟨IfExpr.lit b, ⋯⟩
- IfExpr.normalize' l (IfExpr.var v) = match h : AList.lookup v l with | none => ⟨IfExpr.var v, ⋯⟩ | some b => ⟨IfExpr.lit b, ⋯⟩
- IfExpr.normalize' l ((IfExpr.lit true).ite t e) = match IfExpr.normalize' l t with | ⟨t', ht'⟩ => ⟨t', ⋯⟩
- IfExpr.normalize' l ((IfExpr.lit false).ite t e) = match IfExpr.normalize' l e with | ⟨e', he'⟩ => ⟨e', ⋯⟩
- IfExpr.normalize' l ((a.ite b c).ite d e) = match IfExpr.normalize' l (a.ite (b.ite d e) (c.ite d e)) with | ⟨t', ⋯⟩ => ⟨t', ⋯⟩