IMO 2001 Q5 #
Let ABC
be a triangle. Let AP
bisect ∠BAC
and let BQ
bisect ∠ABC
, with P
on BC
and
Q
on AC
. If AB + BP = AQ + QB
and ∠BAC = 60°
, what are the angles of the triangle?
Solution #
We follow the solution from https://web.evanchen.cc/exams/IMO-2001-notes.pdf.
Let x = ∠ABQ = ∠QBC
; it must be in (0°, 60°)
. By angle chasing and the law of sines we derive
1 + sin 30° / sin (150° - 2x) = (sin x + sin 60°) / sin (120° - x)
Solving this equation gives x = 40°
, yielding ∠ABC = 80°
and ∠ACB = 40°
.
structure
Imo2001Q5.Setup
{V : Type u_1}
(X : Type u_2)
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
:
Type u_2
The problem's configuration.
- A : X
- B : X
- C : X
- P : X
- Q : X
- AP_bisect_BAC : EuclideanGeometry.angle self.B self.A self.P = EuclideanGeometry.angle self.P self.A self.C
- BQ_bisect_ABC : EuclideanGeometry.angle self.A self.B self.Q = EuclideanGeometry.angle self.Q self.B self.C
Instances For
Nondegeneracy properties and values of angles #
theorem
Imo2001Q5.Setup.A_ne_B
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.A_ne_C
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.B_ne_C
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.not_collinear_BAC
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.BAP_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.PAC_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.P_ne_B
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.P_ne_C
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.sbtw_BPC
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.BPC_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
def
Imo2001Q5.Setup.x
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
x = ∠ABQ = ∠QBC
. This is the main angle in the solution and it suffices to show
this is 2 * π / 9
.
Instances For
theorem
Imo2001Q5.Setup.ABQ_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.QBC_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.ABC_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.x_pos
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.Q_ne_A
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.Q_ne_C
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.sbtw_AQC
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.AQC_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.ACB_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.x_lt_pi_div_three
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.APB_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.Setup.AQB_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
A macro for applying the bounds on x
, x_pos
and x_lt_pi_div_three
.
Equations
- Imo2001Q5.Setup.bx = Lean.ParserDescr.node `Imo2001Q5.Setup.bx 1024 (Lean.ParserDescr.nonReservedSymbol "bx" false)
Instances For
Trigonometric reduction using the law of sines #
theorem
Imo2001Q5.Setup.key_x_equation
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
The key trigonometric equation for x
.
Solving the trigonometric equation #
theorem
Imo2001Q5.Setup.x_eq
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
:
theorem
Imo2001Q5.result
{V : Type u_1}
{X : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace X]
[NormedAddTorsor V X]
(s : Setup X)
: