Documentation

Archive.Imo.Imo2001Q5

IMO 2001 Q5 #

Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P on BC and Q on AC. If AB + BP = AQ + QB and ∠BAC = 60°, what are the angles of the triangle?

Solution #

We follow the solution from https://web.evanchen.cc/exams/IMO-2001-notes.pdf.

Let x = ∠ABQ = ∠QBC; it must be in (0°, 60°). By angle chasing and the law of sines we derive

1 + sin 30° / sin (150° - 2x) = (sin x + sin 60°) / sin (120° - x)

Solving this equation gives x = 40°, yielding ∠ABC = 80° and ∠ACB = 40°.

structure Imo2001Q5.Setup {V : Type u_1} (X : Type u_2) [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace X] [NormedAddTorsor V X] :
Type u_2

The problem's configuration.

Instances For

    Nondegeneracy properties and values of angles #

    x = ∠ABQ = ∠QBC. This is the main angle in the solution and it suffices to show this is 2 * π / 9.

    Equations
    Instances For

      A macro for applying the bounds on x, x_pos and x_lt_pi_div_three.

      Equations
      Instances For

        Trigonometric reduction using the law of sines #

        theorem Imo2001Q5.Setup.BP_by_AB {V : Type u_1} {X : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace X] [NormedAddTorsor V X] (s : Setup X) :
        dist s.B s.P = Real.sin (Real.pi / 6) / Real.sin (5 * Real.pi / 6 - 2 * s.x) * dist s.A s.B

        dist B P in terms of dist A B.

        theorem Imo2001Q5.Setup.AQ_by_AB {V : Type u_1} {X : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace X] [NormedAddTorsor V X] (s : Setup X) :
        dist s.A s.Q = Real.sin s.x / Real.sin (2 * Real.pi / 3 - s.x) * dist s.A s.B

        dist A Q in terms of dist A B.

        theorem Imo2001Q5.Setup.QB_by_AB {V : Type u_1} {X : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace X] [NormedAddTorsor V X] (s : Setup X) :
        dist s.Q s.B = Real.sin (Real.pi / 3) / Real.sin (2 * Real.pi / 3 - s.x) * dist s.A s.B

        dist Q B in terms of dist A B.

        The key trigonometric equation for x.

        Solving the trigonometric equation #