Documentation

Mathlib.Analysis.Convex.Between

Betweenness in affine spaces #

This file defines notions of a point in an affine space being between two given points.

Main definitions #

def affineSegment (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
Set P

The segment of points weakly between x and y. When convexity is refactored to support abstract affine combination spaces, this will no longer need to be a separate definition from segment. However, lemmas involving +ᵥ or -ᵥ will still be relevant after such a refactoring, as distinct from versions involving + or - in a module.

Equations
Instances For
    theorem affineSegment_eq_segment (R : Type u_1) {V : Type u_2} [OrderedRing R] [AddCommGroup V] [Module R V] (x y : V) :
    affineSegment R x y = segment R x y
    theorem affineSegment_comm (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    theorem left_mem_affineSegment (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    theorem right_mem_affineSegment (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
    @[simp]
    theorem affineSegment_same (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) :
    affineSegment R x x = {x}
    @[simp]
    theorem affineSegment_image {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] (f : P →ᵃ[R] P') (x y : P) :
    f '' affineSegment R x y = affineSegment R (f x) (f y)
    @[simp]
    theorem affineSegment_const_vadd_image (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) (v : V) :
    (fun (x : P) => v +ᵥ x) '' affineSegment R x y = affineSegment R (v +ᵥ x) (v +ᵥ y)
    @[simp]
    theorem affineSegment_vadd_const_image (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : V) (p : P) :
    (fun (x : V) => x +ᵥ p) '' affineSegment R x y = affineSegment R (x +ᵥ p) (y +ᵥ p)
    @[simp]
    theorem affineSegment_const_vsub_image (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y p : P) :
    (fun (x : P) => p -ᵥ x) '' affineSegment R x y = affineSegment R (p -ᵥ x) (p -ᵥ y)
    @[simp]
    theorem affineSegment_vsub_const_image (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y p : P) :
    (fun (x : P) => x -ᵥ p) '' affineSegment R x y = affineSegment R (x -ᵥ p) (y -ᵥ p)
    @[simp]
    theorem mem_const_vadd_affineSegment {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (v : V) :
    v +ᵥ z affineSegment R (v +ᵥ x) (v +ᵥ y) z affineSegment R x y
    @[simp]
    theorem mem_vadd_const_affineSegment {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : V} (p : P) :
    z +ᵥ p affineSegment R (x +ᵥ p) (y +ᵥ p) z affineSegment R x y
    @[simp]
    theorem mem_const_vsub_affineSegment {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
    p -ᵥ z affineSegment R (p -ᵥ x) (p -ᵥ y) z affineSegment R x y
    @[simp]
    theorem mem_vsub_const_affineSegment {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
    z -ᵥ p affineSegment R (x -ᵥ p) (y -ᵥ p) z affineSegment R x y
    def Wbtw (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y z : P) :

    The point y is weakly between x and z.

    Equations
    Instances For
      def Sbtw (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y z : P) :

      The point y is strictly between x and z.

      Equations
      Instances For
        theorem mem_segment_iff_wbtw {R : Type u_1} {V : Type u_2} [OrderedRing R] [AddCommGroup V] [Module R V] {x y z : V} :
        y segment R x z Wbtw R x y z
        theorem Wbtw.mem_segment {R : Type u_1} {V : Type u_2} [OrderedRing R] [AddCommGroup V] [Module R V] {x y z : V} :
        Wbtw R x y zy segment R x z

        Alias of the reverse direction of mem_segment_iff_wbtw.

        theorem Convex.mem_of_wbtw {R : Type u_1} {V : Type u_2} [OrderedRing R] [AddCommGroup V] [Module R V] {p₀ p₁ p₂ : V} {s : Set V} (hs : Convex R s) (h₀₁₂ : Wbtw R p₀ p₁ p₂) (h₀ : p₀ s) (h₂ : p₂ s) :
        p₁ s
        theorem AffineSubspace.mem_of_wbtw {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {s : AffineSubspace R P} {x y z : P} (hxyz : Wbtw R x y z) (hx : x s) (hz : z s) :
        y s
        theorem Wbtw.map {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {x y z : P} (h : Wbtw R x y z) (f : P →ᵃ[R] P') :
        Wbtw R (f x) (f y) (f z)
        theorem Function.Injective.wbtw_map_iff {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {x y z : P} {f : P →ᵃ[R] P'} (hf : Injective f) :
        Wbtw R (f x) (f y) (f z) Wbtw R x y z
        theorem Function.Injective.sbtw_map_iff {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {x y z : P} {f : P →ᵃ[R] P'} (hf : Injective f) :
        Sbtw R (f x) (f y) (f z) Sbtw R x y z
        @[simp]
        theorem AffineEquiv.wbtw_map_iff {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {x y z : P} (f : P ≃ᵃ[R] P') :
        Wbtw R (f x) (f y) (f z) Wbtw R x y z
        @[simp]
        theorem AffineEquiv.sbtw_map_iff {R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {x y z : P} (f : P ≃ᵃ[R] P') :
        Sbtw R (f x) (f y) (f z) Sbtw R x y z
        @[simp]
        theorem wbtw_const_vadd_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (v : V) :
        Wbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) Wbtw R x y z
        @[simp]
        theorem wbtw_vadd_const_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : V} (p : P) :
        Wbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) Wbtw R x y z
        @[simp]
        theorem wbtw_const_vsub_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
        Wbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) Wbtw R x y z
        @[simp]
        theorem wbtw_vsub_const_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
        Wbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) Wbtw R x y z
        @[simp]
        theorem sbtw_const_vadd_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (v : V) :
        Sbtw R (v +ᵥ x) (v +ᵥ y) (v +ᵥ z) Sbtw R x y z
        @[simp]
        theorem sbtw_vadd_const_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : V} (p : P) :
        Sbtw R (x +ᵥ p) (y +ᵥ p) (z +ᵥ p) Sbtw R x y z
        @[simp]
        theorem sbtw_const_vsub_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
        Sbtw R (p -ᵥ x) (p -ᵥ y) (p -ᵥ z) Sbtw R x y z
        @[simp]
        theorem sbtw_vsub_const_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (p : P) :
        Sbtw R (x -ᵥ p) (y -ᵥ p) (z -ᵥ p) Sbtw R x y z
        theorem Sbtw.wbtw {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        Wbtw R x y z
        theorem Sbtw.ne_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        y x
        theorem Sbtw.left_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        x y
        theorem Sbtw.ne_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        y z
        theorem Sbtw.right_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        z y
        theorem Sbtw.mem_image_Ioo {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        theorem Wbtw.mem_affineSpan {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) :
        y affineSpan R {x, z}
        theorem wbtw_comm {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Wbtw R x y z Wbtw R z y x
        theorem Wbtw.symm {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Wbtw R x y zWbtw R z y x

        Alias of the forward direction of wbtw_comm.

        theorem sbtw_comm {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Sbtw R x y z Sbtw R z y x
        theorem Sbtw.symm {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Sbtw R x y zSbtw R z y x

        Alias of the forward direction of sbtw_comm.

        @[simp]
        theorem wbtw_self_left (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        Wbtw R x x y
        @[simp]
        theorem wbtw_self_right (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        Wbtw R x y y
        @[simp]
        theorem wbtw_self_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} :
        Wbtw R x y x y = x
        @[simp]
        theorem not_sbtw_self_left (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        ¬Sbtw R x x y
        @[simp]
        theorem not_sbtw_self_right (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        ¬Sbtw R x y y
        theorem Wbtw.left_ne_right_of_ne_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : y x) :
        x z
        theorem Wbtw.left_ne_right_of_ne_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : y z) :
        x z
        theorem Sbtw.left_ne_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        x z
        theorem sbtw_iff_mem_image_Ioo_and_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} :
        Sbtw R x y z y (AffineMap.lineMap x z) '' Set.Ioo 0 1 x z
        @[simp]
        theorem not_sbtw_self (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        ¬Sbtw R x y x
        theorem wbtw_swap_left_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y : P} (z : P) :
        Wbtw R x y z Wbtw R y x z x = y
        theorem wbtw_swap_right_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] (x : P) {y z : P} :
        Wbtw R x y z Wbtw R x z y y = z
        theorem wbtw_rotate_iff (R : Type u_1) {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] (x : P) {y z : P} :
        Wbtw R x y z Wbtw R z x y x = y
        theorem Wbtw.swap_left_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Wbtw R x y z) :
        Wbtw R y x z x = y
        theorem Wbtw.swap_right_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Wbtw R x y z) :
        Wbtw R x z y y = z
        theorem Wbtw.rotate_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Wbtw R x y z) :
        Wbtw R z x y x = y
        theorem Sbtw.not_swap_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Sbtw R x y z) :
        ¬Wbtw R y x z
        theorem Sbtw.not_swap_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Sbtw R x y z) :
        ¬Wbtw R x z y
        theorem Sbtw.not_rotate {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y z : P} (h : Sbtw R x y z) :
        ¬Wbtw R z x y
        @[simp]
        theorem wbtw_lineMap_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y : P} {r : R} :
        Wbtw R x ((AffineMap.lineMap x y) r) y x = y r Set.Icc 0 1
        @[simp]
        theorem sbtw_lineMap_iff {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {x y : P} {r : R} :
        Sbtw R x ((AffineMap.lineMap x y) r) y x y r Set.Ioo 0 1
        @[simp]
        theorem wbtw_mul_sub_add_iff {R : Type u_1} [OrderedRing R] [NoZeroDivisors R] {x y r : R} :
        Wbtw R x (r * (y - x) + x) y x = y r Set.Icc 0 1
        @[simp]
        theorem sbtw_mul_sub_add_iff {R : Type u_1} [OrderedRing R] [NoZeroDivisors R] {x y r : R} :
        Sbtw R x (r * (y - x) + x) y x y r Set.Ioo 0 1
        @[simp]
        theorem wbtw_zero_one_iff {R : Type u_1} [OrderedRing R] {x : R} :
        Wbtw R 0 x 1 x Set.Icc 0 1
        @[simp]
        theorem wbtw_one_zero_iff {R : Type u_1} [OrderedRing R] {x : R} :
        Wbtw R 1 x 0 x Set.Icc 0 1
        @[simp]
        theorem sbtw_zero_one_iff {R : Type u_1} [OrderedRing R] {x : R} :
        Sbtw R 0 x 1 x Set.Ioo 0 1
        @[simp]
        theorem sbtw_one_zero_iff {R : Type u_1} [OrderedRing R] {x : R} :
        Sbtw R 1 x 0 x Set.Ioo 0 1
        theorem Wbtw.trans_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Wbtw R w y z) (h₂ : Wbtw R w x y) :
        Wbtw R w x z
        theorem Wbtw.trans_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Wbtw R w x z) (h₂ : Wbtw R x y z) :
        Wbtw R w y z
        theorem Wbtw.trans_sbtw_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Wbtw R w y z) (h₂ : Sbtw R w x y) :
        Sbtw R w x z
        theorem Wbtw.trans_sbtw_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Wbtw R w x z) (h₂ : Sbtw R x y z) :
        Sbtw R w y z
        theorem Sbtw.trans_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Sbtw R w y z) (h₂ : Sbtw R w x y) :
        Sbtw R w x z
        theorem Sbtw.trans_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Sbtw R w x z) (h₂ : Sbtw R x y z) :
        Sbtw R w y z
        theorem Wbtw.trans_left_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Wbtw R w y z) (h₂ : Wbtw R w x y) (h : y z) :
        x z
        theorem Wbtw.trans_right_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Wbtw R w x z) (h₂ : Wbtw R x y z) (h : w x) :
        w y
        theorem Sbtw.trans_wbtw_left_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Sbtw R w y z) (h₂ : Wbtw R w x y) :
        x z
        theorem Sbtw.trans_wbtw_right_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {w x y z : P} (h₁ : Sbtw R w x z) (h₂ : Wbtw R x y z) :
        w y
        theorem Sbtw.affineCombination_of_mem_affineSpan_pair {R : Type u_1} {V : Type u_2} {P : Type u_4} [OrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroDivisors R] [NoZeroSMulDivisors R V] {ι : Type u_6} {p : ιP} (ha : AffineIndependent R p) {w w₁ w₂ : ιR} {s : Finset ι} (hw : is, w i = 1) (hw₁ : is, w₁ i = 1) (hw₂ : is, w₂ i = 1) (h : (Finset.affineCombination R s p) w affineSpan R {(Finset.affineCombination R s p) w₁, (Finset.affineCombination R s p) w₂}) {i : ι} (his : i s) (hs : Sbtw R (w₁ i) (w i) (w₂ i)) :
        theorem Wbtw.sameRay_vsub {R : Type u_1} {V : Type u_2} {P : Type u_4} [StrictOrderedCommRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) :
        SameRay R (y -ᵥ x) (z -ᵥ y)
        theorem Wbtw.sameRay_vsub_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [StrictOrderedCommRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) :
        SameRay R (y -ᵥ x) (z -ᵥ x)
        theorem Wbtw.sameRay_vsub_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [StrictOrderedCommRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) :
        SameRay R (z -ᵥ x) (z -ᵥ y)
        theorem sbtw_of_sbtw_of_sbtw_of_mem_affineSpan_pair {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [NoZeroSMulDivisors R V] {t : Affine.Triangle R P} {i₁ i₂ i₃ : Fin 3} (h₁₂ : i₁ i₂) {p₁ p₂ p : P} (h₁ : Sbtw R (t.points i₂) p₁ (t.points i₃)) (h₂ : Sbtw R (t.points i₁) p₂ (t.points i₃)) (h₁' : p affineSpan R {t.points i₁, p₁}) (h₂' : p affineSpan R {t.points i₂, p₂}) :
        Sbtw R (t.points i₁) p p₁

        Suppose lines from two vertices of a triangle to interior points of the opposite side meet at p. Then p lies in the interior of the first (and by symmetry the other) segment from a vertex to the point on the opposite side.

        theorem wbtw_iff_left_eq_or_right_mem_image_Ici {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Wbtw R x y z x = y z (AffineMap.lineMap x y) '' Set.Ici 1
        theorem Wbtw.right_mem_image_Ici_of_left_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : x y) :
        theorem Wbtw.right_mem_affineSpan_of_left_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : x y) :
        z affineSpan R {x, y}
        theorem sbtw_iff_left_ne_and_right_mem_image_Ioi {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Sbtw R x y z x y z (AffineMap.lineMap x y) '' Set.Ioi 1
        theorem Sbtw.right_mem_image_Ioi {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        theorem Sbtw.right_mem_affineSpan {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        z affineSpan R {x, y}
        theorem wbtw_iff_right_eq_or_left_mem_image_Ici {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Wbtw R x y z z = y x (AffineMap.lineMap z y) '' Set.Ici 1
        theorem Wbtw.left_mem_image_Ici_of_right_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : z y) :
        theorem Wbtw.left_mem_affineSpan_of_right_ne {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) (hne : z y) :
        x affineSpan R {z, y}
        theorem sbtw_iff_right_ne_and_left_mem_image_Ioi {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Sbtw R x y z z y x (AffineMap.lineMap z y) '' Set.Ioi 1
        theorem Sbtw.left_mem_image_Ioi {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        theorem Sbtw.left_mem_affineSpan {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Sbtw R x y z) :
        x affineSpan R {z, y}
        theorem AffineSubspace.right_mem_of_wbtw {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} {s : AffineSubspace R P} (hxyz : Wbtw R x y z) (hx : x s) (hy : y s) (hxy : x y) :
        z s
        theorem wbtw_smul_vadd_smul_vadd_of_nonneg_of_le {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 r₁) (hr₂ : r₁ r₂) :
        Wbtw R x (r₁ v +ᵥ x) (r₂ v +ᵥ x)
        theorem wbtw_or_wbtw_smul_vadd_of_nonneg {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 r₁) (hr₂ : 0 r₂) :
        Wbtw R x (r₁ v +ᵥ x) (r₂ v +ᵥ x) Wbtw R x (r₂ v +ᵥ x) (r₁ v +ᵥ x)
        theorem wbtw_smul_vadd_smul_vadd_of_nonpos_of_le {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ 0) (hr₂ : r₂ r₁) :
        Wbtw R x (r₁ v +ᵥ x) (r₂ v +ᵥ x)
        theorem wbtw_or_wbtw_smul_vadd_of_nonpos {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ 0) (hr₂ : r₂ 0) :
        Wbtw R x (r₁ v +ᵥ x) (r₂ v +ᵥ x) Wbtw R x (r₂ v +ᵥ x) (r₁ v +ᵥ x)
        theorem wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : r₁ 0) (hr₂ : 0 r₂) :
        Wbtw R (r₁ v +ᵥ x) x (r₂ v +ᵥ x)
        theorem wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x : P) (v : V) {r₁ r₂ : R} (hr₁ : 0 r₁) (hr₂ : r₂ 0) :
        Wbtw R (r₁ v +ᵥ x) x (r₂ v +ᵥ x)
        theorem Wbtw.trans_left_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Wbtw R w y z) (h₂ : Wbtw R w x y) :
        Wbtw R x y z
        theorem Wbtw.trans_right_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Wbtw R w x z) (h₂ : Wbtw R x y z) :
        Wbtw R w x y
        theorem Sbtw.trans_left_right {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Sbtw R w y z) (h₂ : Sbtw R w x y) :
        Sbtw R x y z
        theorem Sbtw.trans_right_left {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {w x y z : P} (h₁ : Sbtw R w x z) (h₂ : Sbtw R x y z) :
        Sbtw R w x y
        theorem Wbtw.collinear {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Wbtw R x y z) :
        Collinear R {x, y, z}
        theorem Collinear.wbtw_or_wbtw_or_wbtw {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} (h : Collinear R {x, y, z}) :
        Wbtw R x y z Wbtw R y z x Wbtw R z x y
        theorem wbtw_iff_sameRay_vsub {R : Type u_1} {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y z : P} :
        Wbtw R x y z SameRay R (y -ᵥ x) (z -ᵥ y)
        theorem wbtw_pointReflection (R : Type u_1) {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        theorem sbtw_pointReflection_of_ne (R : Type u_1) {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} (h : x y) :
        theorem wbtw_midpoint (R : Type u_1) {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] (x y : P) :
        Wbtw R x (midpoint R x y) y
        theorem sbtw_midpoint_of_ne (R : Type u_1) {V : Type u_2} {P : Type u_4} [LinearOrderedField R] [AddCommGroup V] [Module R V] [AddTorsor V P] {x y : P} (h : x y) :
        Sbtw R x (midpoint R x y) y