Documentation

Mathlib.Algebra.Order.Interval.Set.Group

Lemmas about arithmetic operations and intervals. #

inv_mem_Ixx_iff, sub_mem_Ixx_iff

theorem Set.inv_mem_Icc_iff {α : Type u_1} [OrderedCommGroup α] {a c d : α} :
theorem Set.neg_mem_Icc_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Icc c d a Icc (-d) (-c)
theorem Set.inv_mem_Ico_iff {α : Type u_1} [OrderedCommGroup α] {a c d : α} :
theorem Set.neg_mem_Ico_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ico c d a Ioc (-d) (-c)
theorem Set.inv_mem_Ioc_iff {α : Type u_1} [OrderedCommGroup α] {a c d : α} :
theorem Set.neg_mem_Ioc_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ioc c d a Ico (-d) (-c)
theorem Set.inv_mem_Ioo_iff {α : Type u_1} [OrderedCommGroup α] {a c d : α} :
theorem Set.neg_mem_Ioo_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ioo c d a Ioo (-d) (-c)

add_mem_Ixx_iff_left

theorem Set.add_mem_Icc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Icc c d a Icc (c - b) (d - b)
theorem Set.add_mem_Ico_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ico c d a Ico (c - b) (d - b)
theorem Set.add_mem_Ioc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioc c d a Ioc (c - b) (d - b)
theorem Set.add_mem_Ioo_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioo c d a Ioo (c - b) (d - b)

add_mem_Ixx_iff_right

theorem Set.add_mem_Icc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Icc c d b Icc (c - a) (d - a)
theorem Set.add_mem_Ico_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ico c d b Ico (c - a) (d - a)
theorem Set.add_mem_Ioc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioc c d b Ioc (c - a) (d - a)
theorem Set.add_mem_Ioo_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioo c d b Ioo (c - a) (d - a)

sub_mem_Ixx_iff_left

theorem Set.sub_mem_Icc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Icc c d a Icc (c + b) (d + b)
theorem Set.sub_mem_Ico_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ico c d a Ico (c + b) (d + b)
theorem Set.sub_mem_Ioc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioc c d a Ioc (c + b) (d + b)
theorem Set.sub_mem_Ioo_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioo c d a Ioo (c + b) (d + b)

sub_mem_Ixx_iff_right

theorem Set.sub_mem_Icc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Icc c d b Icc (a - d) (a - c)
theorem Set.sub_mem_Ico_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ico c d b Ioc (a - d) (a - c)
theorem Set.sub_mem_Ioc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioc c d b Ico (a - d) (a - c)
theorem Set.sub_mem_Ioo_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioo c d b Ioo (a - d) (a - c)
theorem Set.mem_Icc_iff_abs_le {R : Type u_2} [LinearOrderedAddCommGroup R] {x y z : R} :
|x - y| z y Icc (x - z) (x + z)

sub_mem_Ixx_zero_right and sub_mem_Ixx_zero_iff_right; this specializes the previous lemmas to the case of reflecting the interval.

theorem Set.sub_mem_Icc_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Icc 0 b a Icc 0 b
theorem Set.sub_mem_Ico_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ico 0 b a Ioc 0 b
theorem Set.sub_mem_Ioc_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ioc 0 b a Ico 0 b
theorem Set.sub_mem_Ioo_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ioo 0 b a Ioo 0 b
theorem Set.nonempty_Ico_sdiff {α : Type u_1} [LinearOrderedAddCommGroup α] {x dx y dy : α} (h : dy < dx) (hx : 0 < dx) :
Nonempty (Ico x (x + dx) \ Ico y (y + dy))

If we remove a smaller interval from a larger, the result is nonempty

Lemmas about disjointness of translates of intervals #

theorem Set.pairwise_disjoint_Ioc_mul_zpow {α : Type u_1} [OrderedCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (a * b ^ n) (a * b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ioc_add_zsmul {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (a + n b) (a + (n + 1) b))
theorem Set.pairwise_disjoint_Ico_mul_zpow {α : Type u_1} [OrderedCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (a * b ^ n) (a * b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ico_add_zsmul {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (a + n b) (a + (n + 1) b))
theorem Set.pairwise_disjoint_Ioo_mul_zpow {α : Type u_1} [OrderedCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (a * b ^ n) (a * b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ioo_add_zsmul {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (a + n b) (a + (n + 1) b))
theorem Set.pairwise_disjoint_Ioc_zpow {α : Type u_1} [OrderedCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (b ^ n) (b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ioc_zsmul {α : Type u_1} [OrderedAddCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (n b) ((n + 1) b))
theorem Set.pairwise_disjoint_Ico_zpow {α : Type u_1} [OrderedCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (b ^ n) (b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ico_zsmul {α : Type u_1} [OrderedAddCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (n b) ((n + 1) b))
theorem Set.pairwise_disjoint_Ioo_zpow {α : Type u_1} [OrderedCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (b ^ n) (b ^ (n + 1)))
theorem Set.pairwise_disjoint_Ioo_zsmul {α : Type u_1} [OrderedAddCommGroup α] (b : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (n b) ((n + 1) b))
theorem Set.pairwise_disjoint_Ioc_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (a + n) (a + n + 1))
@[deprecated Set.pairwise_disjoint_Ioc_add_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ioc_add_int_cast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (a + n) (a + n + 1))

Alias of Set.pairwise_disjoint_Ioc_add_intCast.

theorem Set.pairwise_disjoint_Ico_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (a + n) (a + n + 1))
@[deprecated Set.pairwise_disjoint_Ico_add_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ico_add_int_cast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (a + n) (a + n + 1))

Alias of Set.pairwise_disjoint_Ico_add_intCast.

theorem Set.pairwise_disjoint_Ioo_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (a + n) (a + n + 1))
@[deprecated Set.pairwise_disjoint_Ioo_add_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ioo_add_int_cast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (a + n) (a + n + 1))

Alias of Set.pairwise_disjoint_Ioo_add_intCast.

theorem Set.pairwise_disjoint_Ico_intCast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (↑n) (n + 1))
@[deprecated Set.pairwise_disjoint_Ico_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ico_int_cast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (↑n) (n + 1))

Alias of Set.pairwise_disjoint_Ico_intCast.

theorem Set.pairwise_disjoint_Ioo_intCast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (↑n) (n + 1))
@[deprecated Set.pairwise_disjoint_Ioo_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ioo_int_cast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (↑n) (n + 1))

Alias of Set.pairwise_disjoint_Ioo_intCast.

theorem Set.pairwise_disjoint_Ioc_intCast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (↑n) (n + 1))
@[deprecated Set.pairwise_disjoint_Ioc_intCast (since := "2024-04-17")]
theorem Set.pairwise_disjoint_Ioc_int_cast (α : Type u_1) [OrderedRing α] :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (↑n) (n + 1))

Alias of Set.pairwise_disjoint_Ioc_intCast.