Documentation

Mathlib.Algebra.Order.Group.Basic

Lemmas about the interaction of power operations with order #

theorem zpow_right_strictMono {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {a : α} (ha : 1 < a) :
StrictMono fun (n : ) => a ^ n
theorem zsmul_left_strictMono {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {a : α} (ha : 0 < a) :
StrictMono fun (n : ) => n a
theorem zpow_right_strictAnti {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {a : α} (ha : a < 1) :
StrictAnti fun (n : ) => a ^ n
theorem zsmul_left_strictAnti {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {a : α} (ha : a < 0) :
StrictAnti fun (n : ) => n a
theorem zpow_right_inj {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {a : α} (ha : 1 < a) {m n : } :
a ^ m = a ^ n m = n
theorem zsmul_left_inj {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {a : α} (ha : 0 < a) {m n : } :
m a = n a m = n
theorem zpow_right_mono {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {a : α} (ha : 1 a) :
Monotone fun (n : ) => a ^ n
theorem zsmul_left_mono {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {a : α} (ha : 0 a) :
Monotone fun (n : ) => n a
theorem zpow_le_zpow_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {m n : } {a : α} (ha : 1 a) (h : m n) :
a ^ m a ^ n
theorem zsmul_le_zsmul_left {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {m n : } {a : α} (ha : 0 a) (h : m n) :
m a n a
theorem zpow_lt_zpow_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {m n : } {a : α} (ha : 1 < a) (h : m < n) :
a ^ m < a ^ n
theorem zsmul_lt_zsmul_left {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {m n : } {a : α} (ha : 0 < a) (h : m < n) :
m a < n a
theorem zpow_le_zpow_iff_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {m n : } {a : α} (ha : 1 < a) :
a ^ m a ^ n m n
theorem zsmul_le_zsmul_iff_left {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {m n : } {a : α} (ha : 0 < a) :
m a n a m n
theorem zpow_lt_zpow_iff_right {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {m n : } {a : α} (ha : 1 < a) :
a ^ m < a ^ n m < n
theorem zsmul_lt_zsmul_iff_left {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {m n : } {a : α} (ha : 0 < a) :
m a < n a m < n
theorem zpow_left_strictMono (α : Type u_1) [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {n : } (hn : 0 < n) :
StrictMono fun (x : α) => x ^ n
theorem zsmul_strictMono_right (α : Type u_1) [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {n : } (hn : 0 < n) :
StrictMono fun (x : α) => n x
theorem zpow_left_mono (α : Type u_1) [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {n : } (hn : 0 n) :
Monotone fun (x : α) => x ^ n
theorem zsmul_mono_right (α : Type u_1) [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {n : } (hn : 0 n) :
Monotone fun (x : α) => n x
theorem zpow_le_zpow_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {n : } {a b : α} (hn : 0 n) (h : a b) :
a ^ n b ^ n
theorem zsmul_le_zsmul_right {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {n : } {a b : α} (hn : 0 n) (h : a b) :
n a n b
theorem zpow_lt_zpow_left {α : Type u_1} [CommGroup α] [PartialOrder α] [IsOrderedMonoid α] {n : } {a b : α} (hn : 0 < n) (h : a < b) :
a ^ n < b ^ n
theorem zsmul_lt_zsmul_right {α : Type u_1} [AddCommGroup α] [PartialOrder α] [IsOrderedAddMonoid α] {n : } {a b : α} (hn : 0 < n) (h : a < b) :
n a < n b
theorem zpow_le_zpow_iff_left {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] {n : } {a b : α} (hn : 0 < n) :
a ^ n b ^ n a b
theorem zsmul_le_zsmul_iff_right {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] {n : } {a b : α} (hn : 0 < n) :
n a n b a b
theorem zpow_lt_zpow_iff_left {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] {n : } {a b : α} (hn : 0 < n) :
a ^ n < b ^ n a < b
theorem zsmul_lt_zsmul_iff_right {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] {n : } {a b : α} (hn : 0 < n) :
n a < n b a < b

A nontrivial densely linear ordered commutative group can't be a cyclic group.

A nontrivial densely linear ordered additive commutative group can't be a cyclic group.