Ordered groups #
This file defines bundled ordered groups and develops a few basic results.
Implementation details #
Unfortunately, the number of ' appended to lemmas in this file
may differ between the multiplicative and the additive version of a lemma.
The reason is that we did not want to change existing names in the library.
theorem
OrderedCommGroup.mul_lt_mul_left'
{α : Type u_1}
[Mul α]
[LT α]
[MulLeftStrictMono α]
{b c : α}
(bc : b < c)
(a : α)
:
Alias of mul_lt_mul_left'.
theorem
OrderedAddCommGroup.add_lt_add_left
{α : Type u_1}
[Add α]
[LT α]
[AddLeftStrictMono α]
{b c : α}
(bc : b < c)
(a : α)
:
theorem
OrderedCommGroup.le_of_mul_le_mul_left
{α : Type u_1}
[Mul α]
[LE α]
[MulLeftReflectLE α]
{a b c : α}
(bc : a * b ≤ a * c)
:
Alias of le_of_mul_le_mul_left'.
theorem
OrderedCommGroup.le_of_add_le_add_left
{α : Type u_1}
[Add α]
[LE α]
[AddLeftReflectLE α]
{a b c : α}
(bc : a + b ≤ a + c)
:
theorem
OrderedCommGroup.lt_of_mul_lt_mul_left
{α : Type u_1}
[Mul α]
[LT α]
[MulLeftReflectLT α]
{a b c : α}
(bc : a * b < a * c)
:
Alias of lt_of_mul_lt_mul_left'.
theorem
OrderedCommGroup.lt_of_add_lt_add_left
{α : Type u_1}
[Add α]
[LT α]
[AddLeftReflectLT α]
{a b c : α}
(bc : a + b < a + c)
:
@[instance 100]
instance
IsOrderedMonoid.toIsOrderedCancelMonoid
{α : Type u}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
:
@[instance 100]
instance
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
:
Linearly ordered commutative groups #
theorem
LinearOrderedCommGroup.mul_lt_mul_left'
{α : Type u}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
(a b : α)
(h : a < b)
(c : α)
:
theorem
LinearOrderedAddCommGroup.add_lt_add_left
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
(a b : α)
(h : a < b)
(c : α)
:
theorem
eq_one_of_inv_eq'
{α : Type u}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
{a : α}
(h : a⁻¹ = a)
:
theorem
eq_zero_of_neg_eq
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{a : α}
(h : -a = a)
:
theorem
exists_one_lt'
{α : Type u}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
[Nontrivial α]
:
theorem
exists_zero_lt
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Nontrivial α]
:
@[instance 100]
instance
LinearOrderedCommGroup.to_noMaxOrder
{α : Type u}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
[Nontrivial α]
:
@[instance 100]
instance
LinearOrderedAddCommGroup.to_noMaxOrder
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Nontrivial α]
:
@[instance 100]
instance
LinearOrderedCommGroup.to_noMinOrder
{α : Type u}
[CommGroup α]
[LinearOrder α]
[IsOrderedMonoid α]
[Nontrivial α]
:
@[instance 100]
instance
LinearOrderedAddCommGroup.to_noMinOrder
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Nontrivial α]
:
@[simp]
@[simp]
theorem
neg_le_self_iff
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
@[simp]
@[simp]
theorem
neg_lt_self_iff
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
@[simp]
@[simp]
theorem
le_neg_self_iff
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
@[simp]
@[simp]
theorem
lt_neg_self_iff
{α : Type u}
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
theorem
neg_le_neg
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
neg_lt_neg
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a b : α}
:
theorem
inv_lt_one_of_one_lt
{α : Type u}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a : α}
:
theorem
neg_neg_of_pos
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
theorem
inv_le_one_of_one_le
{α : Type u}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a : α}
:
theorem
neg_nonpos_of_nonneg
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a : α}
:
theorem
one_le_inv_of_le_one
{α : Type u}
[CommGroup α]
[PartialOrder α]
[IsOrderedMonoid α]
{a : α}
:
theorem
neg_nonneg_of_nonpos
{α : Type u}
[AddCommGroup α]
[PartialOrder α]
[IsOrderedAddMonoid α]
{a : α}
: