IMO 2013 Q5 #
Let ℚ>₀
be the positive rational numbers. Let f : ℚ>₀ → ℝ
be a function satisfying
the conditions
f(x) * f(y) ≥ f(x * y)
f(x + y) ≥ f(x) + f(y)
for all x, y ∈ ℚ>₀
. Given that f(a) = a
for some rational a > 1
, prove that f(x) = x
for
all x ∈ ℚ>₀
.
Solution #
We provide a direct translation of the solution found in https://www.imo-official.org/problems/IMO2013SL.pdf
theorem
Imo2013Q5.fixed_point_of_gt_1
{f : ℚ → ℝ}
{x : ℚ}
(hx : 1 < x)
(H1 : ∀ (x y : ℚ), 0 < x → 0 < y → f (x * y) ≤ f x * f y)
(H2 : ∀ (x y : ℚ), 0 < x → 0 < y → f x + f y ≤ f (x + y))
(H4 : ∀ (n : ℕ), 0 < n → ↑n ≤ f ↑n)
(H5 : ∀ (x : ℚ), 1 < x → ↑x ≤ f x)
{a : ℚ}
(ha1 : 1 < a)
(hae : f a = ↑a)
:
f x = ↑x