The Solution of a Cubic #
This file proves Theorem 37 from the 100 Theorems List.
In this file, we give the solutions to the cubic equation a * x^3 + b * x^2 + c * x + d = 0
over a field K
that has characteristic neither 2 nor 3, that has a third primitive root of
unity, and in which certain other quantities admit square and cube roots.
This is based on the Cardano's Formula.
Main statements #
cubic_eq_zero_iff
: gives the roots of the cubic equation where the discriminantp = 3 * a * c - b^2
is nonzero.cubic_eq_zero_iff_of_p_eq_zero
: gives the roots of the cubic equation where the discriminant equals zero.
References #
Originally ported from Isabelle/HOL. The original file was written by Amine Chaieb.
Tags #
polynomial, cubic, root
theorem
Theorems100.cube_root_of_unity_sum
{K : Type u_1}
[Field K]
{ω : K}
(hω : IsPrimitiveRoot ω 3)
:
theorem
Theorems100.cubic_basic_eq_zero_iff
{K : Type u_1}
[Field K]
{ω : K}
{p : K}
{q : K}
{r : K}
{s : K}
{t : K}
(hω : IsPrimitiveRoot ω 3)
(hp_nonzero : p ≠ 0)
(hr : r ^ 2 = q ^ 2 + p ^ 3)
(hs3 : s ^ 3 = q + r)
(ht : t * s = p)
(x : K)
:
The roots of a monic cubic whose quadratic term is zero and whose discriminant is nonzero.
theorem
Theorems100.cubic_monic_eq_zero_iff
{K : Type u_1}
[Field K]
(b : K)
(c : K)
(d : K)
{ω : K}
{p : K}
{q : K}
{r : K}
{s : K}
{t : K}
[Invertible 2]
[Invertible 3]
(hω : IsPrimitiveRoot ω 3)
(hp : p = (3 * c - b ^ 2) / 9)
(hp_nonzero : p ≠ 0)
(hq : q = (9 * b * c - 2 * b ^ 3 - 27 * d) / 54)
(hr : r ^ 2 = q ^ 2 + p ^ 3)
(hs3 : s ^ 3 = q + r)
(ht : t * s = p)
(x : K)
:
Roots of a monic cubic whose discriminant is nonzero.
theorem
Theorems100.cubic_eq_zero_iff
{K : Type u_1}
[Field K]
(a : K)
(b : K)
(c : K)
(d : K)
{ω : K}
{p : K}
{q : K}
{r : K}
{s : K}
{t : K}
[Invertible 2]
[Invertible 3]
(ha : a ≠ 0)
(hω : IsPrimitiveRoot ω 3)
(hp : p = (3 * a * c - b ^ 2) / (9 * a ^ 2))
(hp_nonzero : p ≠ 0)
(hq : q = (9 * a * b * c - 2 * b ^ 3 - 27 * a ^ 2 * d) / (54 * a ^ 3))
(hr : r ^ 2 = q ^ 2 + p ^ 3)
(hs3 : s ^ 3 = q + r)
(ht : t * s = p)
(x : K)
:
The Solution of Cubic. The roots of a cubic polynomial whose discriminant is nonzero.
theorem
Theorems100.cubic_eq_zero_iff_of_p_eq_zero
{K : Type u_1}
[Field K]
(a : K)
(b : K)
(c : K)
(d : K)
{ω : K}
{q : K}
{s : K}
[Invertible 2]
[Invertible 3]
(ha : a ≠ 0)
(hω : IsPrimitiveRoot ω 3)
(hpz : 3 * a * c - b ^ 2 = 0)
(hq : q = (9 * a * b * c - 2 * b ^ 3 - 27 * a ^ 2 * d) / (54 * a ^ 3))
(hs3 : s ^ 3 = 2 * q)
(x : K)
:
the solution of the cubic equation when p equals zero.