Documentation

Archive.ZagierTwoSquares

Zagier's "one-sentence proof" of Fermat's theorem on sums of two squares #

"The involution on the finite set S = {(x, y, z) : ℕ × ℕ × ℕ | x ^ 2 + 4 * y * z = p} defined by

(x, y, z) ↦ (x + 2 * z, z, y - x - z) if x < y - z
            (2 * y - x, y, x - y + z) if y - z < x < 2 * y
            (x - 2 * y, x - y + z, y) if x > 2 * y

has exactly one fixed point, so |S| is odd and the involution defined by (x, y, z) ↦ (x, z, y) also has a fixed point." — Don Zagier

This elementary proof (Nat.Prime.sq_add_sq') is independent of Nat.Prime.sq_add_sq in Mathlib.NumberTheory.SumTwoSquares, which uses the unique factorisation of ℤ[i]. For a geometric interpretation of the piecewise involution (Zagier.complexInvo) see Moritz Firsching's MathOverflow answer.

The set of all triples of natural numbers (x, y, z) satisfying x * x + 4 * y * z = 4 * k + 1.

Equations
Instances For
    theorem Zagier.zagierSet_lower_bound (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] {x y z : } (h : (x, y, z) zagierSet k) :
    0 < x 0 < y 0 < z
    theorem Zagier.zagierSet_upper_bound (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] {x y z : } (h : (x, y, z) zagierSet k) :
    x k + 1 y k z k
    theorem Zagier.zagierSet_subset (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] :
    noncomputable instance Zagier.instFintypeElemProdNatZagierSet (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] :
    Equations

    The obvious involution (x, y, z) ↦ (x, z, y).

    Equations
    Instances For
      theorem Zagier.obvInvo_sq (k : ) :
      obvInvo k ^ 2 = 1
      theorem Zagier.sq_add_sq_of_nonempty_fixedPoints (k : ) (hn : (Function.fixedPoints (obvInvo k)).Nonempty) :
      ∃ (a : ) (b : ), a ^ 2 + b ^ 2 = 4 * k + 1

      If obvInvo k has a fixed point, a representation of 4 * k + 1 as a sum of two squares can be extracted from it.

      The complicated involution, defined piecewise according to how x compares with y - z and 2 * y.

      Equations
      • Zagier.complexInvo k (x_1, y, z), h = if x_1 + z < y then (x_1 + 2 * z, z, y - x_1 - z) else if 2 * y < x_1 then (x_1 - 2 * y, x_1 + z - y, y) else (2 * y - x_1, y, x_1 + z - y),
      Instances For
        theorem Zagier.complexInvo_sq (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] :

        complexInvo k is indeed an involution.

        theorem Zagier.eq_of_mem_fixedPoints (k : ) [hk : Fact (Nat.Prime (4 * k + 1))] {t : (zagierSet k)} (mem : t Function.fixedPoints (complexInvo k)) :
        t = (1, 1, k)

        Any fixed point of complexInvo k must be (1, 1, k).

        The singleton containing (1, 1, k).

        Equations
        Instances For

          complexInvo k has exactly one fixed point.

          theorem Nat.Prime.sq_add_sq' {p : } [h : Fact (Prime p)] (hp : p % 4 = 1) :
          ∃ (a : ) (b : ), a ^ 2 + b ^ 2 = p

          Fermat's theorem on sums of two squares (Wiedijk #20). Every prime congruent to 1 mod 4 is the sum of two squares, proved using Zagier's involutions.