Documentation

Batteries.Data.Nat.Lemmas

Basic lemmas about natural numbers #

The primary purpose of the lemmas in this file is to assist with reasoning about sizes of objects, array indices and such. For a more thorough development of the theory of natural numbers, we recommend using Mathlib.

rec/cases #

@[simp]
theorem Nat.recAux_zero {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive nmotive (n + 1)) :
Nat.recAux zero succ 0 = zero
theorem Nat.recAux_succ {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive nmotive (n + 1)) (n : Nat) :
Nat.recAux zero succ (n + 1) = succ n (Nat.recAux zero succ n)
@[simp]
theorem Nat.recAuxOn_zero {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive nmotive (n + 1)) :
Nat.recAuxOn 0 zero succ = zero
theorem Nat.recAuxOn_succ {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive nmotive (n + 1)) (n : Nat) :
Nat.recAuxOn (n + 1) zero succ = succ n (Nat.recAuxOn n zero succ)
@[simp]
theorem Nat.casesAuxOn_zero {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive (n + 1)) :
Nat.casesAuxOn 0 zero succ = zero
theorem Nat.casesAuxOn_succ {motive : NatSort u_1} (zero : motive 0) (succ : (n : Nat) → motive (n + 1)) (n : Nat) :
Nat.casesAuxOn (n + 1) zero succ = succ n
theorem Nat.strongRec_eq {motive : NatSort u_1} (ind : (n : Nat) → ((m : Nat) → m < nmotive m)motive n) (t : Nat) :
Nat.strongRec ind t = ind t fun (m : Nat) (x : m < t) => Nat.strongRec ind m
theorem Nat.strongRecOn_eq {motive : NatSort u_1} (ind : (n : Nat) → ((m : Nat) → m < nmotive m)motive n) (t : Nat) :
Nat.strongRecOn t ind = ind t fun (m : Nat) (x : m < t) => Nat.strongRecOn m ind
@[simp]
theorem Nat.recDiagAux_zero_left {motive : NatNatSort u_1} (zero_left : (n : Nat) → motive 0 n) (zero_right : (m : Nat) → motive m 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (n : Nat) :
Nat.recDiagAux zero_left zero_right succ_succ 0 n = zero_left n
@[simp]
theorem Nat.recDiagAux_zero_right {motive : NatNatSort u_1} (zero_left : (n : Nat) → motive 0 n) (zero_right : (m : Nat) → motive m 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m : Nat) (h : zero_left 0 = zero_right 0 := by first | assumption | trivial) :
Nat.recDiagAux zero_left zero_right succ_succ m 0 = zero_right m
theorem Nat.recDiagAux_succ_succ {motive : NatNatSort u_1} (zero_left : (n : Nat) → motive 0 n) (zero_right : (m : Nat) → motive m 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m n : Nat) :
Nat.recDiagAux zero_left zero_right succ_succ (m + 1) (n + 1) = succ_succ m n (Nat.recDiagAux zero_left zero_right succ_succ m n)
@[simp]
theorem Nat.recDiag_zero_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 0 = zero_zero
theorem Nat.recDiag_zero_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (n : Nat) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 (n + 1) = zero_succ n (Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 n)
theorem Nat.recDiag_succ_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m : Nat) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ (m + 1) 0 = succ_zero m (Nat.recDiag zero_zero zero_succ succ_zero succ_succ m 0)
theorem Nat.recDiag_succ_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m n : Nat) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ (m + 1) (n + 1) = succ_succ m n (Nat.recDiag zero_zero zero_succ succ_zero succ_succ m n)
@[simp]
theorem Nat.recDiagOn_zero_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) :
Nat.recDiagOn 0 0 zero_zero zero_succ succ_zero succ_succ = zero_zero
theorem Nat.recDiagOn_zero_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (n : Nat) :
Nat.recDiagOn 0 (n + 1) zero_zero zero_succ succ_zero succ_succ = zero_succ n (Nat.recDiagOn 0 n zero_zero zero_succ succ_zero succ_succ)
theorem Nat.recDiagOn_succ_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m : Nat) :
Nat.recDiagOn (m + 1) 0 zero_zero zero_succ succ_zero succ_succ = succ_zero m (Nat.recDiagOn m 0 zero_zero zero_succ succ_zero succ_succ)
theorem Nat.recDiagOn_succ_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 nmotive 0 (n + 1)) (succ_zero : (m : Nat) → motive m 0motive (m + 1) 0) (succ_succ : (m n : Nat) → motive m nmotive (m + 1) (n + 1)) (m n : Nat) :
Nat.recDiagOn (m + 1) (n + 1) zero_zero zero_succ succ_zero succ_succ = succ_succ m n (Nat.recDiagOn m n zero_zero zero_succ succ_zero succ_succ)
@[simp]
theorem Nat.casesDiagOn_zero_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 (n + 1)) (succ_zero : (m : Nat) → motive (m + 1) 0) (succ_succ : (m n : Nat) → motive (m + 1) (n + 1)) :
Nat.casesDiagOn 0 0 zero_zero zero_succ succ_zero succ_succ = zero_zero
@[simp]
theorem Nat.casesDiagOn_zero_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 (n + 1)) (succ_zero : (m : Nat) → motive (m + 1) 0) (succ_succ : (m n : Nat) → motive (m + 1) (n + 1)) (n : Nat) :
Nat.casesDiagOn 0 (n + 1) zero_zero zero_succ succ_zero succ_succ = zero_succ n
@[simp]
theorem Nat.casesDiagOn_succ_zero {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 (n + 1)) (succ_zero : (m : Nat) → motive (m + 1) 0) (succ_succ : (m n : Nat) → motive (m + 1) (n + 1)) (m : Nat) :
Nat.casesDiagOn (m + 1) 0 zero_zero zero_succ succ_zero succ_succ = succ_zero m
@[simp]
theorem Nat.casesDiagOn_succ_succ {motive : NatNatSort u_1} (zero_zero : motive 0 0) (zero_succ : (n : Nat) → motive 0 (n + 1)) (succ_zero : (m : Nat) → motive (m + 1) 0) (succ_succ : (m n : Nat) → motive (m + 1) (n + 1)) (m n : Nat) :
Nat.casesDiagOn (m + 1) (n + 1) zero_zero zero_succ succ_zero succ_succ = succ_succ m n

strong case #

def Nat.lt_sum_ge (a b : Nat) :
a < b ⊕' b a

Strong case analysis on a < b ∨ b ≤ a

Equations
Instances For
    def Nat.sum_trichotomy (a b : Nat) :
    a < b ⊕' a = b ⊕' b < a

    Strong case analysis on a < b ∨ a = b ∨ b < a

    Equations
    Instances For

      div/mod #

      sum #

      @[simp]
      theorem Nat.sum_append {l₁ l₂ : List Nat} :
      (l₁ ++ l₂).sum = l₁.sum + l₂.sum

      ofBits #

      @[simp]
      theorem Nat.ofBits_zero (f : Fin 0Bool) :
      ofBits f = 0
      theorem Nat.ofBits_succ {n : Nat} (f : Fin (n + 1)Bool) :
      ofBits f = 2 * ofBits (f Fin.succ) + (f 0).toNat
      theorem Nat.ofBits_lt_two_pow {n : Nat} (f : Fin nBool) :
      ofBits f < 2 ^ n
      @[simp]
      theorem Nat.testBit_ofBits_lt {n : Nat} (f : Fin nBool) (i : Nat) (h : i < n) :
      (ofBits f).testBit i = f i, h
      @[simp]
      theorem Nat.testBit_ofBits_ge {n : Nat} (f : Fin nBool) (i : Nat) (h : n i) :
      (ofBits f).testBit i = false
      theorem Nat.testBit_ofBits {n i : Nat} (f : Fin nBool) :
      (ofBits f).testBit i = if h : i < n then f i, h else false