theorem
List.Sublist.le_countP
{α✝ : Type u_1}
{l₁ l₂ : List α✝}
(s : l₁.Sublist l₂)
(p : α✝ → Bool)
:
List.countP p l₂ - (l₂.length - l₁.length) ≤ List.countP p l₁
The number of elements satisfying a predicate in a sublist is at least the number of elements satisfying the predicate in the list, minus the difference in the lengths.
theorem
List.IsPrefix.le_countP
{α✝ : Type u_1}
{l₁ l₂ : List α✝}
{p : α✝ → Bool}
(s : l₁ <+: l₂)
:
List.countP p l₂ - (l₂.length - l₁.length) ≤ List.countP p l₁
theorem
List.IsSuffix.le_countP
{α✝ : Type u_1}
{l₁ l₂ : List α✝}
{p : α✝ → Bool}
(s : l₁ <:+ l₂)
:
List.countP p l₂ - (l₂.length - l₁.length) ≤ List.countP p l₁
theorem
List.IsInfix.le_countP
{α✝ : Type u_1}
{l₁ l₂ : List α✝}
{p : α✝ → Bool}
(s : l₁ <:+: l₂)
:
List.countP p l₂ - (l₂.length - l₁.length) ≤ List.countP p l₁
theorem
List.le_countP_tail
{α✝ : Type u_1}
{p : α✝ → Bool}
(l : List α✝)
:
List.countP p l - 1 ≤ List.countP p l.tail
The number of elements satisfying a predicate in the tail of a list is at least one less than the number of elements satisfying the predicate in the list.
theorem
List.Sublist.le_count
{α : Type u_1}
[BEq α]
{l₁ l₂ : List α}
(s : l₁.Sublist l₂)
(a : α)
:
List.count a l₂ - (l₂.length - l₁.length) ≤ List.count a l₁
theorem
List.IsPrefix.le_count
{α : Type u_1}
[BEq α]
{l₁ l₂ : List α}
(s : l₁ <+: l₂)
(a : α)
:
List.count a l₂ - (l₂.length - l₁.length) ≤ List.count a l₁
theorem
List.IsSuffix.le_count
{α : Type u_1}
[BEq α]
{l₁ l₂ : List α}
(s : l₁ <:+ l₂)
(a : α)
:
List.count a l₂ - (l₂.length - l₁.length) ≤ List.count a l₁
theorem
List.IsInfix.le_count
{α : Type u_1}
[BEq α]
{l₁ l₂ : List α}
(s : l₁ <:+: l₂)
(a : α)
:
List.count a l₂ - (l₂.length - l₁.length) ≤ List.count a l₁
theorem
List.le_count_tail
{α : Type u_1}
[BEq α]
(a : α)
(l : List α)
:
List.count a l - 1 ≤ List.count a l.tail