Documentation

Init.Data.List.Nat.Sum

@[deprecated List.sum_pos_iff_exists_pos_nat (since := "2025-01-15")]
Equations
Instances For
    theorem List.sum_eq_zero_iff_forall_eq_nat {xs : List Nat} :
    xs.sum = 0 ∀ (x : Nat), x xsx = 0
    @[deprecated List.sum_pos_iff_exists_pos_nat (since := "2025-01-15")]
    def Nat.sum_eq_zero_iff_forall_eq {xs : List Nat} :
    xs.sum = 0 ∀ (x : Nat), x xsx = 0
    Equations
    Instances For
      @[simp]
      theorem List.sum_replicate_nat {n a : Nat} :
      (replicate n a).sum = n * a
      theorem List.sum_append_nat {l₁ l₂ : List Nat} :
      (l₁ ++ l₂).sum = l₁.sum + l₂.sum
      theorem List.sum_eq_foldl_nat {xs : List Nat} :
      xs.sum = foldl (fun (x1 x2 : Nat) => x1 + x2) 0 xs
      theorem List.min_mul_length_le_sum_nat {xs : List Nat} (h : xs []) :
      xs.min h * xs.length xs.sum
      theorem List.min_le_sum_div_length_nat {xs : List Nat} (h : xs []) :
      xs.min h xs.sum / xs.length
      theorem List.sum_le_max_mul_length_nat {xs : List Nat} (h : xs []) :
      xs.sum xs.max h * xs.length
      theorem List.sum_div_length_le_max_nat {xs : List Nat} (h : xs []) :
      xs.sum / xs.length xs.max h