Documentation

Init.Data.Nat.Bitwise.Lemmas

Preliminaries #

noncomputable def Nat.div2Induction {motive : NatSort u} (n : Nat) (ind : (n : Nat) → (n > 0motive (n / 2))motive n) :
motive n

An induction principle for the natural numbers with two cases:

  • n = 0, and the motive is satisfied for 0
  • n > 0, and the motive should be satisfied for n on the assumption that it is satisfied for n / 2.
Equations
Instances For
    @[simp]
    theorem Nat.zero_and (x : Nat) :
    0 &&& x = 0
    @[simp]
    theorem Nat.and_zero (x : Nat) :
    x &&& 0 = 0
    @[simp]
    theorem Nat.one_and_eq_mod_two (n : Nat) :
    1 &&& n = n % 2
    @[simp]
    theorem Nat.and_one_is_mod (x : Nat) :
    x &&& 1 = x % 2

    testBit #

    @[simp]
    theorem Nat.zero_testBit (i : Nat) :
    @[simp]
    theorem Nat.testBit_zero (x : Nat) :
    x.testBit 0 = decide (x % 2 = 1)
    theorem Nat.testBit_succ (x i : Nat) :
    x.testBit i.succ = (x / 2).testBit i
    theorem Nat.testBit_add_one (x i : Nat) :
    x.testBit (i + 1) = (x / 2).testBit i

    Depending on use cases either testBit_add_one or testBit_div_two may be more useful as a simp lemma, so neither is a global simp lemma.

    theorem Nat.testBit_add (x i n : Nat) :
    x.testBit (i + n) = (x / 2 ^ n).testBit i
    theorem Nat.testBit_div_two (x i : Nat) :
    (x / 2).testBit i = x.testBit (i + 1)
    theorem Nat.testBit_div_two_pow {n : Nat} (x i : Nat) :
    (x / 2 ^ n).testBit i = x.testBit (i + n)
    theorem Nat.testBit_eq_decide_div_mod_eq {i x : Nat} :
    x.testBit i = decide (x / 2 ^ i % 2 = 1)
    theorem Nat.toNat_testBit (x i : Nat) :
    (x.testBit i).toNat = x / 2 ^ i % 2
    theorem Nat.exists_testBit_ne_of_ne {x y : Nat} (p : x y) :
    theorem Nat.eq_of_testBit_eq {x y : Nat} (pred : ∀ (i : Nat), x.testBit i = y.testBit i) :
    x = y

    eq_of_testBit_eq allows proving two natural numbers are equal if their bits are all equal.

    theorem Nat.ge_two_pow_of_testBit {i x : Nat} (p : x.testBit i = true) :
    x 2 ^ i
    theorem Nat.testBit_lt_two_pow {x i : Nat} (lt : x < 2 ^ i) :
    theorem Nat.lt_pow_two_of_testBit {n : Nat} (x : Nat) (p : ∀ (i : Nat), i nx.testBit i = false) :
    x < 2 ^ n
    theorem Nat.testBit_two_pow_add_eq (x i : Nat) :
    (2 ^ i + x).testBit i = !x.testBit i
    theorem Nat.testBit_mul_two_pow_add_eq (a b i : Nat) :
    (2 ^ i * a + b).testBit i = (decide (a % 2 = 1) ^^ b.testBit i)
    theorem Nat.testBit_two_pow_add_gt {i j : Nat} (j_lt_i : j < i) (x : Nat) :
    (2 ^ i + x).testBit j = x.testBit j
    @[simp]
    theorem Nat.testBit_mod_two_pow (x j i : Nat) :
    (x % 2 ^ j).testBit i = (decide (i < j) && x.testBit i)
    theorem Nat.not_decide_mod_two_eq_one (x : Nat) :
    (!decide (x % 2 = 1)) = decide (x % 2 = 0)
    theorem Nat.testBit_two_pow_sub_succ {x n : Nat} (h₂ : x < 2 ^ n) (i : Nat) :
    (2 ^ n - (x + 1)).testBit i = (decide (i < n) && !x.testBit i)
    @[simp]
    theorem Nat.testBit_two_pow_sub_one (n i : Nat) :
    (2 ^ n - 1).testBit i = decide (i < n)
    theorem Nat.testBit_bool_toNat (b : Bool) (i : Nat) :
    b.toNat.testBit i = (decide (i = 0) && b)

    testBit 1 i is true iff the index i equals 0.

    theorem Nat.testBit_two_pow {n m : Nat} :
    (2 ^ n).testBit m = decide (n = m)
    @[simp]
    theorem Nat.testBit_two_pow_self {n : Nat} :
    (2 ^ n).testBit n = true
    @[simp]
    theorem Nat.testBit_two_pow_of_ne {n m : Nat} (hm : n m) :
    (2 ^ n).testBit m = false
    @[simp]
    theorem Nat.two_pow_sub_one_mod_two {n : Nat} :
    (2 ^ n - 1) % 2 = 1 % 2 ^ n
    @[simp]
    theorem Nat.mod_two_pos_mod_two_eq_one {x j : Nat} :
    x % 2 ^ j % 2 = 1 0 < j x % 2 = 1

    bitwise #

    theorem Nat.testBit_bitwise {f : BoolBoolBool} (of_false_false : f false false = false) (x y i : Nat) :
    (bitwise f x y).testBit i = f (x.testBit i) (y.testBit i)

    bitwise #

    theorem Nat.bitwise_lt_two_pow {x n y : Nat} {f : BoolBoolBool} (left : x < 2 ^ n) (right : y < 2 ^ n) :
    bitwise f x y < 2 ^ n

    This provides a bound on bitwise operations.

    theorem Nat.bitwise_div_two_pow {f : BoolBoolBool} {x y n : Nat} (of_false_false : f false false = false := by rfl) :
    bitwise f x y / 2 ^ n = bitwise f (x / 2 ^ n) (y / 2 ^ n)
    theorem Nat.bitwise_mod_two_pow {f : BoolBoolBool} {x y n : Nat} (of_false_false : f false false = false := by rfl) :
    bitwise f x y % 2 ^ n = bitwise f (x % 2 ^ n) (y % 2 ^ n)

    and #

    @[simp]
    theorem Nat.testBit_and (x y i : Nat) :
    (x &&& y).testBit i = (x.testBit i && y.testBit i)
    @[simp]
    theorem Nat.and_self (x : Nat) :
    x &&& x = x
    theorem Nat.and_comm (x y : Nat) :
    x &&& y = y &&& x
    theorem Nat.and_assoc (x y z : Nat) :
    x &&& y &&& z = x &&& (y &&& z)
    instance Nat.instAssociativeHAnd :
    Std.Associative fun (x1 x2 : Nat) => x1 &&& x2
    instance Nat.instCommutativeHAnd :
    Std.Commutative fun (x1 x2 : Nat) => x1 &&& x2
    instance Nat.instIdempotentOpHAnd :
    Std.IdempotentOp fun (x1 x2 : Nat) => x1 &&& x2
    theorem Nat.and_lt_two_pow (x : Nat) {y n : Nat} (right : y < 2 ^ n) :
    x &&& y < 2 ^ n
    @[simp]
    theorem Nat.and_two_pow_sub_one_eq_mod (x n : Nat) :
    x &&& 2 ^ n - 1 = x % 2 ^ n
    theorem Nat.and_two_pow_sub_one_of_lt_two_pow {n x : Nat} (lt : x < 2 ^ n) :
    x &&& 2 ^ n - 1 = x
    @[simp]
    theorem Nat.and_mod_two_eq_one {a b : Nat} :
    (a &&& b) % 2 = 1 a % 2 = 1 b % 2 = 1
    theorem Nat.and_div_two_pow {a b n : Nat} :
    (a &&& b) / 2 ^ n = a / 2 ^ n &&& b / 2 ^ n
    theorem Nat.and_div_two {a b : Nat} :
    (a &&& b) / 2 = a / 2 &&& b / 2
    theorem Nat.and_mod_two_pow {a b n : Nat} :
    (a &&& b) % 2 ^ n = a % 2 ^ n &&& b % 2 ^ n

    lor #

    @[simp]
    theorem Nat.zero_or (x : Nat) :
    0 ||| x = x
    @[simp]
    theorem Nat.or_zero (x : Nat) :
    x ||| 0 = x
    @[simp]
    theorem Nat.testBit_or (x y i : Nat) :
    (x ||| y).testBit i = (x.testBit i || y.testBit i)
    @[simp]
    theorem Nat.or_self (x : Nat) :
    x ||| x = x
    theorem Nat.or_comm (x y : Nat) :
    x ||| y = y ||| x
    theorem Nat.or_assoc (x y z : Nat) :
    x ||| y ||| z = x ||| (y ||| z)
    theorem Nat.and_or_distrib_left (x y z : Nat) :
    x &&& (y ||| z) = x &&& y ||| x &&& z
    theorem Nat.and_or_distrib_right (x y z : Nat) :
    (x ||| y) &&& z = x &&& z ||| y &&& z
    @[reducible, inline, deprecated Nat.and_or_distrib_right (since := "2025-10-02")]
    abbrev Nat.and_distrib_right (x y z : Nat) :
    (x ||| y) &&& z = x &&& z ||| y &&& z
    Equations
    Instances For
      theorem Nat.or_and_distrib_left (x y z : Nat) :
      x ||| y &&& z = (x ||| y) &&& (x ||| z)
      theorem Nat.or_and_distrib_right (x y z : Nat) :
      x &&& y ||| z = (x ||| z) &&& (y ||| z)
      instance Nat.instAssociativeHOr :
      Std.Associative fun (x1 x2 : Nat) => x1 ||| x2
      instance Nat.instCommutativeHOr :
      Std.Commutative fun (x1 x2 : Nat) => x1 ||| x2
      instance Nat.instIdempotentOpHOr :
      Std.IdempotentOp fun (x1 x2 : Nat) => x1 ||| x2
      theorem Nat.or_lt_two_pow {x y n : Nat} (left : x < 2 ^ n) (right : y < 2 ^ n) :
      x ||| y < 2 ^ n
      @[simp]
      theorem Nat.or_mod_two_eq_one {a b : Nat} :
      (a ||| b) % 2 = 1 a % 2 = 1 b % 2 = 1
      theorem Nat.or_div_two_pow {a b n : Nat} :
      (a ||| b) / 2 ^ n = a / 2 ^ n ||| b / 2 ^ n
      theorem Nat.or_div_two {a b : Nat} :
      (a ||| b) / 2 = a / 2 ||| b / 2
      theorem Nat.or_mod_two_pow {a b n : Nat} :
      (a ||| b) % 2 ^ n = a % 2 ^ n ||| b % 2 ^ n

      xor #

      @[simp]
      theorem Nat.testBit_xor (x y i : Nat) :
      (x ^^^ y).testBit i = (x.testBit i ^^ y.testBit i)
      @[simp]
      theorem Nat.zero_xor (x : Nat) :
      0 ^^^ x = x
      @[simp]
      theorem Nat.xor_zero (x : Nat) :
      x ^^^ 0 = x
      @[simp]
      theorem Nat.xor_self (x : Nat) :
      x ^^^ x = 0
      theorem Nat.xor_comm (x y : Nat) :
      x ^^^ y = y ^^^ x
      theorem Nat.xor_assoc (x y z : Nat) :
      x ^^^ y ^^^ z = x ^^^ (y ^^^ z)
      instance Nat.instAssociativeHXor :
      Std.Associative fun (x1 x2 : Nat) => x1 ^^^ x2
      instance Nat.instCommutativeHXor :
      Std.Commutative fun (x1 x2 : Nat) => x1 ^^^ x2
      theorem Nat.xor_lt_two_pow {x y n : Nat} (left : x < 2 ^ n) (right : y < 2 ^ n) :
      x ^^^ y < 2 ^ n
      theorem Nat.and_xor_distrib_right {a b c : Nat} :
      (a ^^^ b) &&& c = a &&& c ^^^ b &&& c
      theorem Nat.and_xor_distrib_left {a b c : Nat} :
      a &&& (b ^^^ c) = a &&& b ^^^ a &&& c
      @[simp]
      theorem Nat.xor_mod_two_eq_one {a b : Nat} :
      (a ^^^ b) % 2 = 1 ¬(a % 2 = 1 b % 2 = 1)
      theorem Nat.xor_div_two_pow {a b n : Nat} :
      (a ^^^ b) / 2 ^ n = a / 2 ^ n ^^^ b / 2 ^ n
      theorem Nat.xor_div_two {a b : Nat} :
      (a ^^^ b) / 2 = a / 2 ^^^ b / 2
      theorem Nat.xor_mod_two_pow {a b n : Nat} :
      (a ^^^ b) % 2 ^ n = a % 2 ^ n ^^^ b % 2 ^ n

      Arithmetic #

      theorem Nat.testBit_two_pow_mul_add (a : Nat) {b i : Nat} (b_lt : b < 2 ^ i) (j : Nat) :
      (2 ^ i * a + b).testBit j = if j < i then b.testBit j else a.testBit (j - i)
      theorem Nat.testBit_two_pow_mul {i a j : Nat} :
      (2 ^ i * a).testBit j = (decide (j i) && a.testBit (j - i))
      theorem Nat.testBit_mul_two_pow (x j i : Nat) :
      (x * 2 ^ i).testBit j = (decide (i j) && x.testBit (j - i))
      theorem Nat.two_pow_add_eq_or_of_lt {i b : Nat} (b_lt : b < 2 ^ i) (a : Nat) :
      2 ^ i * a + b = 2 ^ i * a ||| b

      shiftLeft and shiftRight #

      @[simp]
      theorem Nat.testBit_shiftLeft {i j : Nat} (x : Nat) :
      (x <<< i).testBit j = (decide (j i) && x.testBit (j - i))
      @[simp]
      theorem Nat.testBit_shiftRight {i j : Nat} (x : Nat) :
      (x >>> i).testBit j = x.testBit (i + j)
      @[simp]
      theorem Nat.shiftLeft_mod_two_eq_one {x i : Nat} :
      x <<< i % 2 = 1 i = 0 x % 2 = 1
      theorem Nat.bitwise_mul_two_pow {f : BoolBoolBool} {x y n : Nat} (of_false_false : f false false = false := by rfl) :
      bitwise f x y * 2 ^ n = bitwise f (x * 2 ^ n) (y * 2 ^ n)
      theorem Nat.shiftLeft_bitwise_distrib {f : BoolBoolBool} {i a b : Nat} (of_false_false : f false false = false := by rfl) :
      bitwise f a b <<< i = bitwise f (a <<< i) (b <<< i)
      theorem Nat.shiftLeft_and_distrib {i a b : Nat} :
      (a &&& b) <<< i = a <<< i &&& b <<< i
      theorem Nat.shiftLeft_or_distrib {i a b : Nat} :
      (a ||| b) <<< i = a <<< i ||| b <<< i
      theorem Nat.shiftLeft_xor_distrib {i a b : Nat} :
      (a ^^^ b) <<< i = a <<< i ^^^ b <<< i
      @[simp]
      theorem Nat.shiftRight_bitwise_distrib {f : BoolBoolBool} {i a b : Nat} (of_false_false : f false false = false := by rfl) :
      bitwise f a b >>> i = bitwise f (a >>> i) (b >>> i)
      theorem Nat.shiftRight_and_distrib {i a b : Nat} :
      (a &&& b) >>> i = a >>> i &&& b >>> i
      theorem Nat.shiftRight_or_distrib {i a b : Nat} :
      (a ||| b) >>> i = a >>> i ||| b >>> i
      theorem Nat.shiftRight_xor_distrib {i a b : Nat} :
      (a ^^^ b) >>> i = a >>> i ^^^ b >>> i
      theorem Nat.mod_two_pow_shiftLeft_mod_two_pow {a b c : Nat} :
      (a % 2 ^ c) <<< b % 2 ^ c = a <<< b % 2 ^ c
      theorem Nat.le_shiftLeft {a b : Nat} :
      a a <<< b
      theorem Nat.lt_of_shiftLeft_lt {a b c : Nat} (h : a <<< b < c) :
      a < c
      theorem Nat.shiftLeft_add_eq_or_of_lt {i b : Nat} (b_lt : b < 2 ^ i) (a : Nat) :
      a <<< i + b = a <<< i ||| b
      @[simp]
      theorem Nat.shiftLeft_eq_zero_iff {a n : Nat} :
      a <<< n = 0 a = 0
      instance Nat.instNeZeroHShiftLeft {a n : Nat} [NeZero a] :
      NeZero (a <<< n)

      le #

      theorem Nat.le_of_testBit {n m : Nat} (h : ∀ (i : Nat), n.testBit i = truem.testBit i = true) :
      n m
      theorem Nat.and_le_left {n m : Nat} :
      n &&& m n
      theorem Nat.and_le_right {n m : Nat} :
      n &&& m m
      theorem Nat.left_le_or {n m : Nat} :
      n n ||| m
      theorem Nat.right_le_or {n m : Nat} :
      m n ||| m