A position of a subexpression in an expression.
We use a simple encoding scheme for expression positions Pos
:
every Expr
constructor has at most 3 direct expression children. Considering an expression's type
to be one extra child as well, we can injectively map a path of childIdxs
to a natural number
by computing the value of the 4-ary representation 1 :: childIdxs
, since n-ary representations
without leading zeros are unique. Note that pos
is initialized to 1
(case childIdxs == []
).
See also SubExpr
.
Equations
Instances For
The coordinate 3 = maxChildren - 1
is
reserved to denote the type of the expression.
Equations
Instances For
Equations
Instances For
The Pos representing the root subexpression.
Equations
Instances For
Equations
- Lean.SubExpr.Pos.instInhabited = { default := Lean.SubExpr.Pos.root }
Equations
- p.isRoot = decide (p.asNat < Lean.SubExpr.Pos.maxChildren)
Instances For
The coordinate deepest in the Pos.
Equations
- p.head = if p.isRoot = true then panicWithPosWithDecl "Lean.SubExpr" "Lean.SubExpr.Pos.head" 44 19 "already at top" else p.asNat % Lean.SubExpr.Pos.maxChildren
Instances For
Equations
- p.tail = if p.isRoot = true then panicWithPosWithDecl "Lean.SubExpr" "Lean.SubExpr.Pos.tail" 48 19 "already at top" else (p.asNat - p.head) / Lean.SubExpr.Pos.maxChildren
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Fold over the position starting at the root and heading to the leaf
Fold over the position starting at the leaf and heading to the root
monad-fold over the position starting at the root and heading to the leaf
monad-fold over the position starting at the leaf and finishing at the root.
Equations
- p.depth = Lean.SubExpr.Pos.foldr (fun (x : Nat) => Nat.succ) p 0
Instances For
Returns true if pred
is true for each coordinate in p
.
Equations
- Lean.SubExpr.Pos.all pred p = Option.isSome (Lean.SubExpr.Pos.foldrM (fun (n : Nat) (a : Unit) => if pred n = true then pure a else failure) p ()).run
Instances For
Instances For
Creates a subexpression Pos
from an array of 'coordinates'.
Each coordinate is a number {0,1,2} expressing which child subexpression should be explored.
The first coordinate in the array corresponds to the root of the expression tree.
Instances For
Decodes a subexpression Pos
as a sequence of coordinates cs : Array Nat
. See Pos.ofArray
for details.
cs[0]
is the coordinate for the root expression.
Equations
- p.toArray = Lean.SubExpr.Pos.foldl Array.push #[] p
Instances For
Equations
- p.pushBindingDomain = p.push 0
Instances For
Equations
- p.pushBindingBody = p.push 1
Instances For
Equations
- p.pushLetVarType = p.push 0
Instances For
Equations
- p.pushLetValue = p.push 1
Instances For
Equations
- p.pushLetBody = p.push 2
Instances For
Equations
- p.pushAppFn = p.push 0
Instances For
Equations
- p.pushAppArg = p.push 1
Instances For
Equations
- p.pushProj = p.push 0
Instances For
Equations
- p.pushType = p.push Lean.SubExpr.Pos.typeCoord
Instances For
Equations
- Lean.SubExpr.Pos.pushNaryFn numArgs p = p.asNat * Lean.SubExpr.Pos.maxChildren ^ numArgs
Instances For
Equations
- Lean.SubExpr.Pos.pushNaryArg numArgs argIdx p = p.asNat * Lean.SubExpr.Pos.maxChildren ^ (numArgs - argIdx) + 1
Instances For
Equations
- Lean.SubExpr.Pos.pushNthBindingDomain 0 x✝ = x✝.pushBindingDomain
- Lean.SubExpr.Pos.pushNthBindingDomain n.succ x✝ = Lean.SubExpr.Pos.pushNthBindingDomain n x✝.pushBindingBody
Instances For
Equations
- Lean.SubExpr.Pos.pushNthBindingBody 0 x✝ = x✝
- Lean.SubExpr.Pos.pushNthBindingBody n.succ x✝ = Lean.SubExpr.Pos.pushNthBindingBody n x✝.pushBindingBody
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
- Lean.SubExpr.Pos.fromString? "/" = Except.ok Lean.SubExpr.Pos.root
Instances For
Equations
- Lean.SubExpr.Pos.fromString! s = match Lean.SubExpr.Pos.fromString? s with | Except.ok a => a | Except.error e => panicWithPosWithDecl "Lean.SubExpr" "Lean.SubExpr.Pos.fromString!" 140 16 e
Instances For
Equations
- Lean.SubExpr.Pos.instOrd = inferInstance
Equations
- Lean.SubExpr.Pos.instDecidableEq = inferInstance
Equations
- Lean.SubExpr.Pos.instToString = { toString := Lean.SubExpr.Pos.toString }
Equations
- Lean.SubExpr.Pos.instEmptyCollection = { emptyCollection := Lean.SubExpr.Pos.root }
Equations
- Lean.SubExpr.Pos.instRepr = { reprPrec := fun (p : Lean.SubExpr.Pos) (x : Nat) => Lean.format "Pos.fromString! " ++ Lean.format (repr p.toString) ++ Lean.format "" }
Equations
- Lean.SubExpr.Pos.instToJson = { toJson := Lean.toJson ∘ Lean.SubExpr.Pos.toString }
Equations
- Lean.SubExpr.Pos.instFromJson = { fromJson? := fun (j : Lean.Json) => Lean.fromJson? j >>= Lean.SubExpr.Pos.fromString? }
A subexpression of some root expression. Both its value and its position within the root are stored.
- expr : Lean.Expr
The subexpression.
- pos : Lean.SubExpr.Pos
The position of the subexpression within the root expression.
Instances For
Equations
- Lean.instInhabitedSubExpr = { default := { expr := default, pos := default } }
Equations
- Lean.SubExpr.mkRoot e = { expr := e, pos := Lean.SubExpr.Pos.root }
Instances For
Returns true if the selected subexpression is the topmost one.
Equations
- s.isRoot = s.pos.isRoot
Instances For
Map from subexpr positions to values.
Equations
- Lean.SubExpr.PosMap α = Lean.RBMap Lean.SubExpr.Pos α compare
Instances For
Equations
- { expr := Lean.Expr.forallE binderName binderType b binderInfo, pos := p }.bindingBody! = { expr := b, pos := p.pushBindingBody }
- { expr := Lean.Expr.lam binderName binderType b binderInfo, pos := p }.bindingBody! = { expr := b, pos := p.pushBindingBody }
- x✝.bindingBody! = panicWithPosWithDecl "Lean.SubExpr" "Lean.SubExpr.bindingBody!" 179 9 "subexpr is not a binder"
Instances For
Equations
- { expr := Lean.Expr.forallE binderName binderType b binderInfo, pos := p }.bindingDomain! = { expr := binderType, pos := p.pushBindingDomain }
- { expr := Lean.Expr.lam binderName binderType b binderInfo, pos := p }.bindingDomain! = { expr := binderType, pos := p.pushBindingDomain }
- x✝.bindingDomain! = panicWithPosWithDecl "Lean.SubExpr" "Lean.SubExpr.bindingDomain!" 184 9 "subexpr is not a binder"
Instances For
Equations
- Lean.SubExpr.instToJsonFVarId = { toJson := fun (f : Lean.FVarId) => Lean.toJson f.name }
Equations
- Lean.SubExpr.instToJsonMVarId = { toJson := fun (f : Lean.MVarId) => Lean.toJson f.name }
Equations
- Lean.SubExpr.instFromJsonFVarId = { fromJson? := fun (j : Lean.Json) => Lean.FVarId.mk <$> Lean.fromJson? j }
Equations
- Lean.SubExpr.instFromJsonMVarId = { fromJson? := fun (j : Lean.Json) => Lean.MVarId.mk <$> Lean.fromJson? j }
A location within a goal.
- hyp : Lean.FVarId → Lean.SubExpr.GoalLocation
One of the hypotheses.
- hypType : Lean.FVarId → Lean.SubExpr.Pos → Lean.SubExpr.GoalLocation
A subexpression of the type of one of the hypotheses.
- hypValue : Lean.FVarId → Lean.SubExpr.Pos → Lean.SubExpr.GoalLocation
A subexpression of the value of one of the let-bound hypotheses.
- target : Lean.SubExpr.Pos → Lean.SubExpr.GoalLocation
A subexpression of the goal type.
Instances For
Equations
- Lean.SubExpr.instFromJsonGoalLocation = { fromJson? := Lean.SubExpr.fromJsonGoalLocation✝ }
Equations
A location within a goal state. It identifies a specific goal together with a GoalLocation
within it.
- mvarId : Lean.MVarId
Which goal the location is in.
Instances For
Equations
- Lean.SubExpr.instFromJsonGoalsLocation = { fromJson? := Lean.SubExpr.fromJsonGoalsLocation✝ }
Same as Expr.traverseApp
but also includes a
SubExpr.Pos
argument for tracking subexpression position.
Equations
- Lean.Expr.traverseAppWithPos visit p (f.app a) = (f.app a).updateApp! <$> Lean.Expr.traverseAppWithPos visit p.pushAppFn f <*> visit p.pushAppArg a
- Lean.Expr.traverseAppWithPos visit p e = visit p e