Documentation

Mathlib.Algebra.Algebra.Subalgebra.Directed

Subalgebras and directed Unions of sets #

Main results #

theorem Subalgebra.coe_iSup_of_directed {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {ι : Type u_4} [Nonempty ι] {K : ιSubalgebra R A} (dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K) :
(iSup K) = ⋃ (i : ι), (K i)
noncomputable def Subalgebra.iSupLift {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {ι : Type u_4} [Nonempty ι] (K : ιSubalgebra R A) (dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K) (f : (i : ι) → (K i) →ₐ[R] B) (hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (Subalgebra.inclusion h)) (T : Subalgebra R A) (hT : T = iSup K) :
T →ₐ[R] B

Define an algebra homomorphism on a directed supremum of subalgebras by defining it on each subalgebra, and proving that it agrees on the intersection of subalgebras.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Subalgebra.iSupLift_inclusion {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {ι : Type u_4} [Nonempty ι] (K : ιSubalgebra R A) {dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (Subalgebra.inclusion h)} {T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (h : K i T) :
    (Subalgebra.iSupLift K dir f hf T hT) ((Subalgebra.inclusion h) x) = (f i) x
    @[simp]
    theorem Subalgebra.iSupLift_comp_inclusion {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {ι : Type u_4} [Nonempty ι] (K : ιSubalgebra R A) {dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (Subalgebra.inclusion h)} {T : Subalgebra R A} {hT : T = iSup K} {i : ι} (h : K i T) :
    (Subalgebra.iSupLift K dir f hf T hT).comp (Subalgebra.inclusion h) = f i
    @[simp]
    theorem Subalgebra.iSupLift_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {ι : Type u_4} [Nonempty ι] (K : ιSubalgebra R A) {dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (Subalgebra.inclusion h)} {T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (hx : x T) :
    (Subalgebra.iSupLift K dir f hf T hT) x, hx = (f i) x
    theorem Subalgebra.iSupLift_of_mem {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {ι : Type u_4} [Nonempty ι] (K : ιSubalgebra R A) {dir : Directed (fun (x1 x2 : Subalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (Subalgebra.inclusion h)} {T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : T) (hx : x K i) :
    (Subalgebra.iSupLift K dir f hf T hT) x = (f i) x, hx