Documentation

Mathlib.Algebra.Algebra.Subalgebra.Rank

Some results on the ranks of subalgebras #

This file contains some results on the ranks of subalgebras, which are corollaries of rank_mul_rank. Since their proof essentially depends on the fact that a non-trivial commutative ring satisfies strong rank condition, we put them into a separate file.

theorem Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R A] [Module.Free A (Algebra.adjoin A B)] :
Module.rank R (A B) = Module.rank R A * Module.rank A (Algebra.adjoin A B)
theorem Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R A] [Module.Free A (Algebra.adjoin A B)] :
Module.finrank R (A B) = Module.finrank R A * Module.finrank A (Algebra.adjoin A B)
theorem Subalgebra.finrank_left_dvd_finrank_sup_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R A] [Module.Free A (Algebra.adjoin A B)] :
theorem Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R B] [Module.Free B (Algebra.adjoin B A)] :
Module.rank R (A B) = Module.rank R B * Module.rank B (Algebra.adjoin B A)
theorem Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R B] [Module.Free B (Algebra.adjoin B A)] :
Module.finrank R (A B) = Module.finrank R B * Module.finrank B (Algebra.adjoin B A)
theorem Subalgebra.finrank_right_dvd_finrank_sup_of_free {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R B] [Module.Free B (Algebra.adjoin B A)] :