Strong rank condition for commutative rings #
We prove that any nontrivial commutative ring satisfies StrongRankCondition
, meaning that
if there is an injective linear map (Fin n → R) →ₗ[R] Fin m → R
, then n ≤ m
. This implies that
any commutative ring satisfies InvariantBasisNumber
: the rank of a finitely generated free
module is well defined.
Main result #
commRing_strongRankCondition R
:R
has theStrongRankCondition
.
The commRing_strongRankCondition
comes from CommRing.orzechProperty
, proved in
Mathlib/RingTheory/FiniteType.lean
, which states that any commutative ring satisfies
the OrzechProperty
, that is, for any finitely generated
R
-module M
, any surjective homomorphism f : N → M
from a submodule N
of M
to M
is injective.
References #
@[instance 100]
Any nontrivial commutative ring satisfies the StrongRankCondition
.
Equations
- ⋯ = ⋯