Orzech property of rings #
In this file we define the following property of rings:
OrzechProperty R
is a type class stating thatR
satisfies the following property: for any finitely generatedR
-moduleM
, any surjective homomorphismf : N → M
from a submoduleN
ofM
toM
is injective. It was introduced in papers by Orzech [Orz71], Djoković [Djo73] and Ribenboim [Rib71], under the namesΠ
-ring orΠ₁
-ring. It implies the strong rank condition (that is, the existence of an injective linear map(Fin n → R) →ₗ[R] (Fin m → R)
impliesn ≤ m
) if the ring is nontrivial (seeMathlib/LinearAlgebra/InvariantBasisNumber.lean
).
It's proved in the above papers that
- a left Noetherian ring (not necessarily commutative) satisfies the
OrzechProperty
, which in particular includes the division ring case (seeMathlib/RingTheory/Noetherian.lean
); - a commutative ring satisfies the
OrzechProperty
(seeMathlib/RingTheory/FiniteType.lean
).
References #
- Orzech, Morris. Onto endomorphisms are isomorphisms
- Djoković, D. Ž. Epimorphisms of modules which must be isomorphisms
- Ribenboim, Paulo. Épimorphismes de modules qui sont nécessairement des isomorphismes
Tags #
free module, rank, Orzech property, (strong) rank condition, invariant basis number, IBN
theorem
orzechProperty_iff
(R : Type u)
[Semiring R]
:
OrzechProperty R ↔ ∀ {M : Type u} [inst : AddCommMonoid M] [inst_1 : Module R M] [inst_2 : Module.Finite R M] {N : Submodule R M}
(f : { x : M // x ∈ N } →ₗ[R] M), Function.Surjective ⇑f → Function.Injective ⇑f
A ring R
satisfies the Orzech property, if for any finitely generated R
-module M
,
any surjective homomorphism f : N → M
from a submodule N
of M
to M
is injective.
NOTE: In the definition we need to assume that M
has the same universe level as R
, but it
in fact implies the universe polymorphic versions
OrzechProperty.injective_of_surjective_of_injective
and OrzechProperty.injective_of_surjective_of_submodule
.
- injective_of_surjective_of_submodule' : ∀ {M : Type u} [inst : AddCommMonoid M] [inst_1 : Module R M] [inst_2 : Module.Finite R M] {N : Submodule R M} (f : { x : M // x ∈ N } →ₗ[R] M), Function.Surjective ⇑f → Function.Injective ⇑f
Instances
theorem
OrzechProperty.injective_of_surjective_of_submodule'
{R : Type u}
[Semiring R]
[self : OrzechProperty R]
{M : Type u}
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
{N : Submodule R M}
(f : { x : M // x ∈ N } →ₗ[R] M)
:
theorem
OrzechProperty.injective_of_surjective_of_injective
{R : Type u}
[Semiring R]
[OrzechProperty R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
(i : N →ₗ[R] M)
(f : N →ₗ[R] M)
(hi : Function.Injective ⇑i)
(hf : Function.Surjective ⇑f)
:
theorem
OrzechProperty.injective_of_surjective_of_submodule
{R : Type u}
[Semiring R]
[OrzechProperty R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
{N : Submodule R M}
(f : { x : M // x ∈ N } →ₗ[R] M)
(hf : Function.Surjective ⇑f)
:
theorem
OrzechProperty.injective_of_surjective_endomorphism
{R : Type u}
[Semiring R]
[OrzechProperty R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
(f : M →ₗ[R] M)
(hf : Function.Surjective ⇑f)
:
theorem
OrzechProperty.bijective_of_surjective_endomorphism
{R : Type u}
[Semiring R]
[OrzechProperty R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
(f : M →ₗ[R] M)
(hf : Function.Surjective ⇑f)
: