[AGM94] S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, editors.
Handbook of logic in computer science. Vol. 3: Semantic structures.
Oxford: Clarendon Press, 1994.
ISBN 0-19-853762-X.
Zbl:0829.68111. [1][2][3]
[ARV10] J. Adámek, J. Rosický, E. M. Vitale.
Algebraic Theories: A Categorical Introduction to General Algebra.
Cambridge Tracts in Mathematics.
Cambridge University Press, 2010. [1]
[AS03] Erik M. Alfsen, Frederic W. Shultz.
Geometry of state spaces of operator algebras.
Boston, MA: Birkhäuser, 2003.
ISBN 0-8176-4319-2.
Zbl:1042.46001. [1]
[AK21] A. Altman, S. Kleiman.
A Term of Commutative Algebra.
Worldwide Center of Mathematics, 2021.
ISBN 9780988557215. [1][2][3][4][5][6][7]
[Alu16] Paolo Aluffi.
Algebra: Chapter 0.
Reprinted with corrections by the American Mathematical Society edition.
Volume 104 of Graduate Studies in Mathematics.
American Mathematical Society, 2016. [1]
[AM69] M. F. Atiyah, I. G. Macdonald.
Introduction to commutative algebra.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
MR:0242802. [1][2][3][4][5][6]
[ACH19] Jeremy Avigad, Mario M. Carneiro, Simon Hudon.
Data Types as Quotients of Polynomial Functors.
In John Harrison, John O'Leary, Andrew Tolmach, editors, 10th International Conference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.6, URL: https://doi.org/10.4230/LIPIcs.ITP.2019.6. [1][2][3][4][5][6][7][8]
[Beh79] Ehrhard Behrends.
M-structure and the Banach-Stone theorem.
Volume 736.
Springer, Cham, 1979.
Zbl:0436.46013. [1]
[BBDG18] A. A. Beilinson, J. Bernstein, P. Deligne, O. Gabber.
Analyse et topologie sur les espaces singuliers. I : Faisceaux pervers.
Volume 100 of Astérisque.
Société Mathématique de France, Paris, 2018.
MR:751965. [1]
[Ber12] S. Bernstein.
Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités.
Comm. Kharkov Math. Soc., 1912.
[Ber74] Pierre Berthelot.
Cohomologie Cristalline Des Schémas de Caractéristique $p>0$.
Number 407 in Lecture Notes in Mathematics.
sv, 1974. [1][2][3]
[BO78] Pierre Berthelot, Arthur Ogus.
Notes on Crystalline Cohomology.
Number 21 in Math. Notes.
pup, 1978. [1]
[BD96] Ilya Beylin, Peter Dybjer.
Extracting a proof of coherence for monoidal categories from a proof of normalization for monoids.
In Stefano Berardi, Mario Coppo, editors, Types for Proofs and Programs, 47–61. Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. [1][2]
[BB05] Anders Björner, Francesco Brenti.
Combinatorics of Coxeter groups.
Volume 231 of Graduate Texts in Mathematics.
Springer, New York, 2005.
ISBN 978-3540-442387; 3-540-44238-3.
MR:2133266.
[Bol86] Béla Bollobás.
Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability.
Cambridge University Press, 1986.
ISBN 0521330599. [1][2]
[Bor94a] Francis Borceux.
Handbook of Categorical Algebra: Volume 1, Basic Category Theory.
Volume 50 of Encyclopedia of Mathematics.
Cambridge University Press, 1994. [1][2][3][4]
[Bor94b] Francis Borceux.
Handbook of Categorical Algebra: Volume 2, Categories and Structures.
Volume 51 of Encyclopedia of Mathematics.
Cambridge University Press, 1994. [1][2][3][4][5][6][7][8]
[Bor94c] Francis Borceux.
Handbook of Categorical Algebra: Volume 3, Sheaf Theory.
Volume 52 of Encyclopedia of Mathematics.
Cambridge University Press, 1994. [1][2][3]
[Bor86] Richard Borcherds.
Vertex algebras, Kac-Moody algebras, and the monster.
Proceedings of the National Academy of Sciences of the United States of America, 83(10):3068–3071, 1986.
doi:10.1073/pnas.83.10.3068. [1]
[BGR84] S. Bosch, U. Güntzer, R. Remmert.
Non-Archimedean Analysis : A Systematic Approach to Rigid Analytic Geometry.
Volume 261 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag Berlin, 1984. [1][2][3][4][5][6][7][8][9]
[Bou90] N. Bourbaki.
Algebra. II. Chapters 4–7.
Elements of Mathematics.
Springer-Verlag, Berlin, 1990.
ISBN 3-540-19375-8.
Translated from the French by P. M. Cohn and J. Howie.
MR:1080964. [1][2][3][4][5][6][7]
[Bou98a] N. Bourbaki.
Algebra. I. Chapters 1–3.
Softcover edition of the 2nd printing 1989.
Elements of Mathematics.
Springer-Verlag, Berlin, 1998.
ISBN 3-540-64243-9.
Translated from the French. [1][2][3][4]
[Bou66b] Nicolas Bourbaki.
Elements of mathematics. General topology. Part 2.
Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
MR:979295. [1][2][3][4]
[Bou98b] Nicolas Bourbaki.
Lie groups and Lie algebras. Chapters 1–3.
Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 1998.
ISBN 3-540-64242-0.
Translated from the French, Reprint of the 1989 English translation.
MR:1728312.
[Bou02] Nicolas Bourbaki.
Lie groups and Lie algebras. Chapters 4–6.
Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 2002.
ISBN 3-540-42650-7.
Translated from the 1968 French original by Andrew Pressley.
MR:1890629. [1][2][3][4][5][6][7]
[Bou05] Nicolas Bourbaki.
Lie groups and Lie algebras. Chapters 7–9.
Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 2005.
ISBN 3-540-43405-4.
Translated from the 1975 and 1982 French originals by Andrew Pressley.
MR:2109105.
[Bou07] Nicolas Bourbaki.
Algèbre. Chapitre IX.
Réimpression inchangée de l'édition originale de 1959.
Number 2 in Eléments de mathématique.
Springer, 2007.
ISBN 978-3-540-35338-6. [1][2][3][4]
[BG15] Nathan Bowler, Stefan Geschke.
Self-dual uniform matroids on infinite sets.
Proceedings of the American Mathematical Society, 144:1, Oct 2015.
doi:10.1090/proc/12667.
[BS13] M. P. Brodmann, R. Y. Sharp.
Local cohomology.
Second edition.
Volume 136 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2013.
ISBN 978-0-521-51363-0.
An algebraic introduction with geometric applications. [1]
[Buz01] Raushan Z. Buzyakova.
On clopen sets in Cartesian products.
Comment. Math. Univ. Carolin., 42(2):357–362, 2001.
MR:1832154. [1][2][3]
[CGRP14] Miguel Cabrera García, Ángel Rodríguez Palacios.
Non-associative normed algebras. Volume 1. The Vidav-Palmer and Gelfand-Naimark theorems.
Volume 154.
Cambridge: Cambridge University Press, 2014.
ISBN 978-1-107-04306-0; 978-1-107-33776-3.
doi:10.1017/CBO9781107337763, Zbl:1322.46003. [1][2][3]
[CM72] Jean Marie Cadiou Cadiou, Zohar Manna.
Recursive definitions of partial functions and their computations.
ACM SIGACT News, pages 58–65, Jan 1972.
doi:10.1145/942580.807072. [1]
[Car19] Mario M. Carneiro.
Formalizing Computability Theory via Partial Recursive Functions.
In John Harrison, John O'Leary, Andrew Tolmach, editors, 10th International Conference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.12, URL: https://doi.org/10.4230/LIPIcs.ITP.2019.12. [1][2][3][4]
[CF67] John William Scott Cassels, Albrecht Fröhlich.
Algebraic number theory.
Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. [1][2][3][4][5][6][7][8][9][10]
[Cha96] Robin Chapman.
A Polynomial Taking Integer Values.
Math. Mag., 69(2):121–121, 1996.
[Cho94] Ching-Tsun Chou.
A formal theory of undirected graphs in higher-order logic.
In Thomas F. Melham, Juanito Camilleri, editors, Higher Order Logic Theorem Proving and Its Applications, 144–157. Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. [1][2][3]
[Chu12] Cho-Ho Chu.
Jordan structures in geometry and analysis.
Volume 190.
Cambridge: Cambridge University Press, 2012.
ISBN 978-1-107-01617-0.
Zbl:1238.17001. [1]
[Coh95] P. M. Cohn.
Skew Fields: Theory of General Division Rings.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1995.
doi:10.1017/CBO9781139087193. [1]
[Con01] J. H. Conway.
On numbers and games.
Second edition.
A K Peters, Ltd., Natick, MA, 2001.
ISBN 1-56881-127-6.
MR:1803095. [1][2][3]
[Con90] John B. Conway.
A course in functional analysis.
2nd ed.
Volume 96 of Grad. Texts Math.
New York etc.: Springer-Verlag, 1990.
ISBN 0-387-97245-5.
Zbl:0706.46003. [1]
[CC79] P. Cousot, R. Cousot.
Constructive Versions of Tarski's Fixed Point Theorems.
Pacific Journal of Mathematics, 81(1):43–57, 1979. [1][2]
[CLOS97] David A. Cox, John Little, Donal O'Shea.
Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.).
Undergraduate texts in mathematics.
Springer, 1997.
ISBN 978-0-387-94680-1. [1][2]
[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, Jakob von Raumer.
The Lean Theorem Prover (System Description).
In Amy P. Felty, Aart Middeldorp, editors, Automated Deduction - CADE-25, 378–388. Cham, 2015. Springer International Publishing.
[Del75] P. Deligne.
Courbes elliptiques: formulaire d'après J. Tate.
In Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 53–73. Lecture Notes in Math., Vol. 476. 1975.
MR:0387292. [1]
[Dem70] Michel Demazure.
Exposé XXI, Données Radicielles.
In A. Grothendieck M. Demazure, editor, Séminaire de Géométrie Algébrique du Bois Marie - 1962-64 - Schémas en groupes - (SGA 3) - vol. 3, Structure des Schémas en Groupes Reductifs, volume 153 of Lecture Notes in Mathematics, 85–155. Springer-Verlag, 1970.
URL: https://wstein.org/sga/SGA3/Expo21-alpha.pdf. [1][2]
[DG70] Michel Demazure, Pierre Gabriel.
Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs.
Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970.
Avec un appendice ıt Corps de classes local par Michiel Hazewinkel.
MR:0302656. [1]
[DeML78] Richard A. DeMillo, Richard J. Lipton.
A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978.
doi:10.1016/0020-0190(78)90067-4. [1]
[DM22] Yaël Dillies, Bhavik Mehta.
Formalising Szemerédi’s Regularity Lemma in Lean.
In June Andronick, Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics (LIPIcs), 9:1–9:19. Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITP.2022.9, URL: https://drops.dagstuhl.de/opus/volltexte/2022/16718. [1][2][3][4][5][6][7][8][9][10][11]
[DRS72] Peter Doubilet, Gian-Carlo Rota, Richard Stanley.
On the foundations of combinatorial theory. VI. The idea of generating function.
In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, 267–318. Univ. California Press, Berkeley, CA, 1972.
MR:403987. [1]
[DLM22] Frédéric Dupuis, Robert Y. Lewis, Heather Macbeth.
Formalized functional analysis with semilinear maps.
2022.
arXiv:2202.05360. [1][2][3]
[Dyc92] Roy Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.
doi:10.2307/2275431. [1]
[Ech05] Federico Echenique.
A short and constructive proof of Tarski’s fixed-point theorem.
International Journal of Game Theory, 33(2):215–218, 2005.
doi:10.1007/s001820400192. [1][2]
[Eis95] David Eisenbud.
Commutative algebra.
Graduate Texts in Mathematics.
Springer, New York, NY, Mar 1995.
ISBN 978-0-387-94268-1.
doi:10.1007/978-1-4612-5350-1.
[Ell06] Jesse Elliott.
Binomial rings, integer-valued polynomials, and λ-rings.
Journal of Pure and Applied Algebra, 207(1):165–185, 2006.
doi:10.1016/j.jpaa.2005.09.003. [1][2]
[Eng97] Konrad Engel.
Sperner theory.
Cambridge University Press, 1997. [1][2]
[Eng89] Ryszard Engelking.
General topology.
Second edition.
Volume 6 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, 1989.
ISBN 3-88538-006-4.
Translated from the Polish by the author.
MR:1039321. [1]
[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik.
Tensor Categories.
American Mathematical Society (AMS), Providence, RI, 2015.
ISBN 978-1-4704-3441-0. [1]
[Fie71] David E. Fields.
Zero divisors and nilpotent elements in power series rings.
Proceedings of the American Mathematical Society, 27(3):427–433, 1971.
doi:10.1090/S0002-9939-1971-0271100-6. [1]
[Fre03] David H. Fremlin.
Measure theory. Vol. 4.
Torres Fremlin, Colchester, 2003.
Topological Measure Spaces. [1][2][3]
[Fre10] David H. Fremlin.
Measure theory. Vol. 2.
Torres Fremlin, Colchester, 2010.
ISBN 0-9538129-2-8.
Broad foundations, 2010 edition. [1][2][3][4]
[Fre64] Peter J Freyd.
Abelian categories.
Harper's Series in Modern Mathematics.
Harper & Row New York, 1964. [1]
[Fri05] Yaakov Friedman.
Physical applications of homogeneous balls. With the assistance of Tzvi Scarr.
Volume 40.
Boston, MA: Birkhäuser, 2005.
ISBN 0-8176-3339-1.
Zbl:1080.46001. [1]
[FH04] William Fulton, Joe Harris.
Representation theory: a first course.
Springer, 2004. [1]
[FL94] Zoltán Füredi, Peter A. Loeb.
On the best constant for the Besicovitch covering theorem.
Proc. Am. Math. Soc., 121(4):1063–1073, 1994.
doi:10.2307/2161215, Zbl:0802.28002. [1]
[FLST20] Basil Fürer, Andreas Lochbihler, Joshua Schneider, Dmitriy Traytel.
Quotients of Bounded Natural Functors.
In Nicolas Peltier, Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, 58–78. Springer, 2020.
doi:10.1007/978-3-030-51054-1_4, URL: https://doi.org/10.1007/978-3-030-51054-1_4.
[GZ67] P. Gabriel, M. Zisman.
Calculus of fractions and homotopy theory.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35.
Springer-Verlag New York, Inc., New York, 1967. [1][2][3]
[GHK+80] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, Dana S. Scott.
A compendium of continuous lattices.
Springer-Verlag, Berlin-New York, 1980.
ISBN 3-540-10111-X.
MR:614752. [1][2][3][4][5][6]
[GJ09] Paul G. Goerss, John F. Jardine.
Simplicial homotopy theory.
Modern Birkhäuser Classics.
Birkhäuser Verlag, Basel, 2009.
ISBN 978-3-0346-0188-7.
Reprint of the 1999 edition [MR1711612].
doi:10.1007/978-3-0346-0189-4, MR:2840650. [1][2][3][4][5][6]
[Gor55] Russel A. Gordon.
The integrals of Lebesgue, Denjoy, Perron, and Henstock.
Volume 4 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, R.I, 1955.
ISBN 0-8218-3805-9. [1][2]
[HvD19] Jesse Michael Han, Floris van Doorn.
A Formalization of Forcing and the Unprovability of the Continuum Hypothesis.
In John Harrison, John O'Leary, Andrew Tolmach, editors, 10th International Conference on Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics (LIPIcs), 19:1–19:19. Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ITP.2019.19, URL: http://drops.dagstuhl.de/opus/volltexte/2019/11074. [1][2][3][4]
[HOS84] Harald Hanche-Olsen, Erling Størmer.
Jordan operator algebras.
Volume 21.
Pitman, Boston, MA, 1984.
Zbl:0561.46031. [1][2]
[HWHBS08] GH Hardy, EM Wright, Roger Heath-Brown, Joseph Silverman.
An Introduction to the Theory of Numbers.
Oxford University Press, 2008. [1][2][3]
[HWW93] Peter Harmand, Dirk Werner, Wend Werner.
$M$-ideals in Banach spaces and Banach algebras.
Volume 1547.
Berlin: Springer-Verlag, 1993.
ISBN 3-540-56814-X.
doi:10.1007/BFb0084355, Zbl:0789.46011. [1]
[Har67] Robin Hartshorne.
Local cohomology.
Lecture Notes in Mathematics, No. 41.
Springer-Verlag, Berlin-New York, 1967.
A seminar given by A. Grothendieck, Harvard University, Fall, 1961.
MR:0224620. [1]
[Har77] Robin Hartshorne.
Algebraic geometry.
Springer-Verlag, New York-Heidelberg, 1977.
ISBN 0-387-90244-9.
Graduate Texts in Mathematics, No. 52.
MR:0463157. [1]
[Hib75] Jean-Jacques Hiblot.
Des anneaux euclidiens dont le plus petit algorithme n'est pas à valeurs finies.
C. R. Acad. Sci. Paris Sér. A-B, 281(12):Ai, A411–A414, 1975.
MR:399081. [1]
[Hig52] Graham Higman.
Ordering by Divisibility in Abstract Algebras.
Proceedings of the London Mathematical Society, s3-2(1):326-336, 1952.
doi:10.1112/plms/s3-2.1.326. [1]
[HS00] Marc Hindry, Joseph H. Silverman.
Diophantine geometry.
Volume 201 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2000.
An introduction. [1]
[Hua82] Loo-Keng Hua.
Introduction to Number Theory.
Springer, 1982. [1]
[HW91] John H. Hubbard, Beverly H. West.
Differential Equations: A Dynamical Systems Approach.
Volume 5.
Springer, 1991.
ISBN 978-1-4612-8693-6.
doi:10.1007/978-1-4612-4192-8. [1]
[Ior03] Radu Iordănescu.
Jordan structures in geometry and physics. With an appendix on Jordan structures in analysis.
Bucharest: Editura Academiei Române, 2003.
ISBN 973-27-0956-1.
Zbl:1073.17014. [1]
[Ive06] Birger Iversen.
Generic Local Structure of the Morphisms in Commutative Algebra.
Volume 310 of Lecture Notes in Mathematics.
Springer Berlin, Heidelberg, 2006.
ISBN 978-3-540-06137-3.
doi:10.1007/BFb0060790. [1][2][3][4][5][6]
[ILL+07] Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, Uli Walther.
Twenty-four hours of local cohomology.
Volume 87 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2007.
ISBN 978-0-8218-4126-6.
doi:10.1090/gsm/087, URL: https://doi-org.www2.lib.ku.edu/10.1090/gsm/087.
[Joy77] André Joyal.
Remarques sur la théorie des jeux à deux personnes.
Gazette des Sciences Mathematiques du Québec, 1(4):46–52, 1977.
(English translation at https://bosker.files.wordpress.com/2010/12/joyal-games.pdf).
[LS04] S. Lack, P. Sobociński.
Adhesive categories.
In Foundations of Software Science and Computation Structures, FoSSaCS '04, volume 2987 of LNCS, 273–288. Springer, 2004.
URL: https://www.ioc.ee/~pawel/papers/adhesive.pdf. [1][2]
[Lam64] J. Lambek.
A Module is Flat if and Only if its Character Module is Injective.
Canadian Mathematical Bulletin, 7(2):237–243, 1964.
doi:10.4153/CMB-1964-021-9. [1]
[Lan02] Serge Lang.
Algebra.
Third edition.
Graduate Texts in Mathematics.
Springer New York, NY, 2002.
ISBN 978-0-387-95385-4.
doi:10.1007/978-1-4613-0041-0. [1]
[LMT93] R. Lidl, G. L. Mullen, G. Turnwald.
Dickson polynomials.
Volume 65 of Pitman Monographs and Surveys in Pure and Applied Mathematics.
Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.
ISBN 0-582-09119-5.
MR:1237403. [1]
[Man63] Ju. I. Manin.
Theory of commutative formal groups over fields of finite characteristic.
Uspehi Mat. Nauk, 18(6 (114)):3–90, 1963.
MR:0157972. [1]
[Mar76] George Markowsky.
Chain-complete posets and directed sets with applications.
Algebra Universalis, 6(1):53-68, Dec 1976.
doi:10.1007/bf02485815. [1]
[mC20] The mathlib Community.
The Lean Mathematical Library.
In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, 367-381. New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3372885.3373824, URL: https://doi.org/10.1145/3372885.3373824.
[Mat95] Pertti Mattila.
Geometry of sets and measures in Euclidean spaces.
Volume 44 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1995.
ISBN 0-521-46576-1; 0-521-65595-1.
Fractals and rectifiability.
doi:10.1017/CBO9780511623813, URL: https://doi.org/10.1017/CBO9780511623813.
[McB96] Conor McBride.
Inverting inductively defined relations in LEGO.
In International Workshop on Types for Proofs and Programs, 236–253. Springer, 1996.
[Mul86] Christopher J. Mulvey.
&.
Suppl. Rend. Circ. Mat. Palermo (2), 12:99–104, 1986.
Zbl:0633.46065. [1]
[Nag78] Masayoshi Nagata.
On Euclid algorithm.
In C. P. Ramanujam—a tribute, volume 8 of Tata Inst. Fund. Res. Studies in Math., pages 175–186.
Springer, Berlin-New York, 1978.
MR:541021. [1]
[NW63] C. St. J. A. Nash-Williams.
On well-quasi-ordering finite trees.
Mathematical Proceedings of the Cambridge Philosophical Society, 59(4):833–835, 1963.
doi:10.1017/S0305004100003844. [1]
[Neu99] J. Neukirch.
Algebraic number theory.
Volume 322 of Fundamental Principles of Mathematical Sciences.
Springer-Verlag, Berlin, 1999.
ISBN 3-540-65399-6.
Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
doi:10.1007/978-3-662-03983-0. [1][2][3][4][5][6][7][8]
[Neu54] B. H. Neumann.
Groups Covered By Permutable Subsets.
Journal of the London Mathematical Society, s1-29(2):236–248, Apr 1954.
doi:10.1112/jlms/s1-29.2.236. [1]
[Okn91] Jan Okniński.
Semigroup algebras.
Marcel Dekker, 1991. [1]
[Oro18] Greg Orosi.
A simple derivation of Faulhaber's formula.
Appl. Math. E-Notes, 18:124–126, 2018.
Zbl:1411.41023. [1]
[Pet14] G. Petridis.
The Plünnecke-Ruzsa inequality: an overview.
In Combinatorial and additive number theory. Selected papers based on the presentations at the conferences CANT 2011 and 2012, New York, NY, USA, May 2011 and May 2012, pages 229–241.
New York, NY: Springer, 2014.
doi:10.1007/978-1-4939-1601-6_16, Zbl:1371.11029. [1]
[Rib71] Paulo Ribenboim.
Épimorphismes de modules qui sont nécessairement des isomorphismes.
In Séminaire P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et C. Pisot (24ème année: 1970/71), Algèbre et théorie des nombres, Fasc. 2, pages Exp. No. 19, 5.
Éd. Acad. RS Roumanie, Bucharest, 1971.
MR:393128. [1][2][3][4]
[Sch80] Jacob T. Schwartz.
Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.
doi:10.1145/322217.322225. [1]
[Sel67] G. B. Seligman.
Modular Lie algebras.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40.
Springer-Verlag New York, Inc., New York, 1967.
MR:0245627.
[Soa87] Robert I. Soare.
Recursively enumerable sets and degrees.
Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987.
ISBN 3-540-15299-7.
A study of computable functions and computably generated sets.
doi:10.1007/978-3-662-02460-7, MR:882921. [1]
[SOD97] Eugene Spiegel, Christopher J. O'Donnell.
Incidence algebras.
Volume 206 of Monographs and Textbooks in Pure and Applied Mathematics.
Marcel Dekker, Inc., New York, 1997.
ISBN 0-8247-0036-8.
MR:1445562. [1]
[Sta12] Richard P. Stanley.
Enumerative combinatorics.
Cambridge Univ. Press, 2012. [1][2]
[Ste09] Manfred Stern.
Semimodular lattices. Theory and applications.
Reprint of the 1999 hardback ed.
Cambridge: Cambridge University Press, 2009.
ISBN 978-0-521-11884-2.
Zbl:1175.06002. [1]
[Sto35] M. H. Stone.
Postulates for Boolean Algebras and Generalized Boolean Algebras.
American Journal of Mathematics, 1935.
doi:10.2307/2371008. [1][2]
[Sto38] M. H. Stone.
Topological representations of distributive lattices and Brouwerian logics.
Časopis pro pěstování matematiky a fysiky, 1938.
URL: http://dml.cz/dmlcz/124080.
[TV06] Terence Tao, Van H. Vu.
Additive combinatorics.
Volume 105 of Camb. Stud. Adv. Math.
Cambridge: Cambridge University Press, 2006.
ISBN 0-521-85386-9.
Zbl:1127.11002. [1]
[TZ12] Katrin Tent, Martin Ziegler.
A Course in Model Theory.
Lecture Notes in Logic.
Cambridge University Press, 2012.
doi:10.1017/CBO9781139015417. [1]
[Upm87] Harald Upmeier.
Jordan algebras in analysis, operator theory, and quantum mechanics.
Volume 67.
Providence, RI: American Mathematical Society (AMS), 1987.
ISBN 0-8218-0717-X.
Zbl:0608.17013. [1]
[Ver96] Jean-Louis Verdier.
Des catégories dérivées des catégories abéliennes.
Number 239.
1996.
With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
MR:1453167. [1][2][3][4][5][6][7][8][9][10][11]
[Vic89] Steven Vickers.
Topology via Logic.
University of Cambridge, 1989.
ISBN 0-521-57651-2. [1]
[Vis04] Angelo Vistoli.
Notes on Grothendieck topologies, fibered categories and descent theory.
Preprint, arXiv:math/0412512 [math.AG] (2004), 2004.
URL: https://arxiv.org/abs/math/0412512.
[Wal18] H.S. Wall.
Analytic Theory of Continued Fractions.
Dover Books on Mathematics.
Dover Publications, 2018.
ISBN 9780486830445. [1][2]
[Was97] Lawrence C. Washington.
Introduction to cyclotomic fields.
Second edition.
Volume 83 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1997. [1]
[Was04] Larry Wasserman.
All Of Statistics: A Concise Course in Statistical Inference.
Springer, 2004.
[Wei80] Joachim Weidmann.
Linear operators in Hilbert spaces.
Volume 68 of Graduate Texts in Mathematics.
Springer, 1980.
ISBN 0-387-90427-1.
Translated from the German by Joseph Szücs. [1][2]
[Wil04] Stephen Willard.
General topology.
Reprint of the 1970 original edition.
Mineola, NY: Dover Publications, 2004.
ISBN 0-486-43479-6.
Zbl:1052.54001. [1][2][3][4][5]
[Zaa66] A. C. Zaanen.
Lectures on "Riesz Spaces".
Technical Report EUR 3140.e, Euratom, 1966. [1][2]