algNormOfAlgEquiv and invariantExtension #
Let K
be a nonarchimedean normed field and L/K
be a finite algebraic extension. In the comments,
‖ ⬝ ‖
denotes any power-multiplicative K
-algebra norm on L
extending the norm on K
.
Main Definitions #
IsUltrametricDist.algNormOfAlgEquiv
: givenσ : L ≃ₐ[K] L
, the functionL → ℝ
sendingx : L
to‖ σ x ‖
is aK
-algebra norm onL
.IsUltrametricDist.invariantExtension
: the functionL → ℝ
sendingx : L
to the maximum of‖ σ x ‖
over allσ : L ≃ₐ[K] L
is aK
-algebra norm onL
.
Main Results #
IsUltrametricDist.isPowMul_algNormOfAlgEquiv
:algNormOfAlgEquiv
is power-multiplicative.IsUltrametricDist.isNonarchimedean_algNormOfAlgEquiv
:algNormOfAlgEquiv
is nonarchimedean.IsUltrametricDist.algNormOfAlgEquiv_extends
:algNormOfAlgEquiv
extends the norm onK
.IsUltrametricDist.isPowMul_invariantExtension
:invariantExtension
is power-multiplicative.IsUltrametricDist.isNonarchimedean_invariantExtension
:invariantExtension
is nonarchimedean.IsUltrametricDist.invariantExtension_extends
:invariantExtension
extends the norm onK
.
References #
Tags #
algNormOfAlgEquiv, invariantExtension, norm, nonarchimedean
Given a normed field K
, a finite algebraic extension L/K
and σ : L ≃ₐ[K] L
, the function
L → ℝ
sending x : L
to ‖ σ x ‖
, where ‖ ⬝ ‖
is any power-multiplicative algebra norm on L
extending the norm on K
, is an algebra norm on K
.
Equations
- IsUltrametricDist.algNormOfAlgEquiv σ = { toFun := fun (x : L) => (Classical.choose ⋯) (σ x), map_zero' := ⋯, add_le' := ⋯, neg' := ⋯, mul_le' := ⋯, eq_zero_of_map_eq_zero' := ⋯, smul' := ⋯ }
Instances For
The algebra norm algNormOfAlgEquiv
is power-multiplicative.
The algebra norm algNormOfAlgEquiv
is nonarchimedean.
The algebra norm algNormOfAlgEquiv
extends the norm on K
.
The function L → ℝ
sending x : L
to the maximum of algNormOfAlgEquiv hna σ
over
all σ : L ≃ₐ[K] L
is an algebra norm on L
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The algebra norm invariantExtension
is power-multiplicative.
The algebra norm invariantExtension
is nonarchimedean.
The algebra norm invariantExtension
extends the norm on K
.