Documentation

Counterexamples.Pseudoelement

Pseudoelements and pullbacks #

Borceux claims in Proposition 1.9.5 that the pseudoelement constructed in CategoryTheory.Abelian.Pseudoelement.pseudo_pullback is unique. We show here that this claim is false. This means in particular that we cannot have an extensionality principle for pullbacks in terms of pseudoelements.

Implementation details #

The construction, suggested in https://mathoverflow.net/a/419951/7845, is the following. We work in the category of ModuleCat and we consider the special case of ℚ ⊞ ℚ (that is the pullback over the terminal object). We consider the pseudoelements associated to x : ℚ ⟶ ℚ ⊞ ℚ given by t ↦ (t, 2 * t) and y : ℚ ⟶ ℚ ⊞ ℚ given by t ↦ (t, t).

Main results #

References #

x is given by t ↦ (t, 2 * t).

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    biprod.fst ≫ x is pseudoequal to biprod.fst y.

    biprod.snd ≫ x is pseudoequal to biprod.snd y.

    biprod.fst ⟦x⟧ = biprod.fst ⟦y⟧.

    biprod.snd ⟦x⟧ = biprod.snd ⟦y⟧.

    There are two pseudoelements x y : ℚ ⊞ ℚ such that xy, biprod.fst x = biprod.fst y and biprod.snd x = biprod.snd y.