Documentation

Mathlib.CategoryTheory.Presentable.Basic

Presentable objects #

A functor F : C ⥤ D is κ-accessible (Functor.IsCardinalAccessible) if it commutes with colimits of shape J where J is any κ-filtered category (that is essentially small relative to the universe w such that κ : Cardinal.{w}.). We also introduce another typeclass Functor.IsAccessible saying that there exists a regular cardinal κ such that Functor.IsCardinalAccessible.

An object X of a category is κ-presentable (IsCardinalPresentable) if the functor Hom(X, _) (i.e. coyoneda.obj (op X)) is κ-accessible. Similar as for accessible functors, we define a type class IsAccessible.

References #

A functor F : C ⥤ D is κ-accessible (with κ a regular cardinal) if it preserves colimits of shape J where J is any κ-filtered category. In the mathematical literature, some assumptions are often made on the categories C or D (e.g. the existence of κ-filtered colimits, see HasCardinalFilteredColimits below), but here we do not make such assumptions.

Instances

    A functor is accessible relative to a universe w if it is κ-accessible for some regular κ : Cardinal.{w}.

    Instances
      @[reducible, inline]

      An object X in a category is κ-presentable (for κ a regular cardinal) when the functor Hom(X, _) preserves colimits indexed by κ-filtered categories.

      Equations
      Instances For

        The property of objects that are κ-presentable.

        Equations
        Instances For
          theorem CategoryTheory.IsCardinalPresentable.exists_eq_of_isColimit {C : Type u₁} [Category.{v₁, u₁} C] {X : C} (κ : Cardinal.{w}) [Fact κ.IsRegular] [IsCardinalPresentable X κ] {J : Type u₂} [Category.{v₂, u₂} J] [EssentiallySmall.{w, v₂, u₂} J] [IsCardinalFiltered J κ] {F : Functor J C} {c : Limits.Cocone F} (hc : Limits.IsColimit c) {i₁ i₂ : J} (f₁ : X F.obj i₁) (f₂ : X F.obj i₂) (hf : CategoryStruct.comp f₁ (c.ι.app i₁) = CategoryStruct.comp f₂ (c.ι.app i₂)) :
          ∃ (j : J) (u : i₁ j) (v : i₂ j), CategoryStruct.comp f₁ (F.map u) = CategoryStruct.comp f₂ (F.map v)
          theorem CategoryTheory.IsCardinalPresentable.exists_eq_of_isColimit' {C : Type u₁} [Category.{v₁, u₁} C] {X : C} (κ : Cardinal.{w}) [Fact κ.IsRegular] [IsCardinalPresentable X κ] {J : Type u₂} [Category.{v₂, u₂} J] [EssentiallySmall.{w, v₂, u₂} J] [IsCardinalFiltered J κ] {F : Functor J C} {c : Limits.Cocone F} (hc : Limits.IsColimit c) {i : J} (f₁ f₂ : X F.obj i) (hf : CategoryStruct.comp f₁ (c.ι.app i) = CategoryStruct.comp f₂ (c.ι.app i)) :
          ∃ (j : J) (u : i j), CategoryStruct.comp f₁ (F.map u) = CategoryStruct.comp f₂ (F.map u)
          @[reducible, inline]

          An object of a category is presentable relative to a universe w if it is κ-presentable for some regular κ : Cardinal.{w}.

          Equations
          Instances For

            A category has κ-filtered colimits if it has colimits of shape J for any κ-filtered category J.

            Instances