Documentation

Mathlib.SetTheory.Cardinal.HasCardinalLT

The property of being of cardinality less than a cardinal #

Given X : Type u and κ : Cardinal.{v}, we introduce a predicate HasCardinalLT X κ expressing that Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ.

def HasCardinalLT (X : Type u) (κ : Cardinal.{v}) :

The property that the cardinal of a type X : Type u is less than κ : Cardinal.{v}.

Equations
Instances For
    theorem HasCardinalLT.of_le {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {κ' : Cardinal.{v}} (hκ' : κ κ') :
    theorem HasCardinalLT.of_injective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : YX) (hf : Function.Injective f) :
    theorem HasCardinalLT.of_surjective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : XY) (hf : Function.Surjective f) :
    theorem hasCardinalLT_iff_of_equiv {X : Type u} {Y : Type u'} (e : X Y) (κ : Cardinal.{v}) :

    For any w-small type X, there exists a regular cardinal κ : Cardinal.{w} such that HasCardinalLT X κ.

    theorem HasCardinalLT.exists_regular_cardinal_forall {ι : Type v} {X : ιType u} [Small.{w, v} ι] [∀ (i : ι), Small.{w, u} (X i)] :
    ∃ (κ : Cardinal.{w}), κ.IsRegular ∀ (i : ι), HasCardinalLT (X i) κ

    For any w-small family X : ι → Type u of w-small types, there exists a regular cardinal κ : Cardinal.{w} such that HasCardinalLT (X i) κ for all i : ι.