Documentation

Mathlib.SetTheory.Cardinal.HasCardinalLT

The property of being of cardinality less than a cardinal #

Given X : Type u and κ : Cardinal.{v}, we introduce a predicate HasCardinalLT X κ expressing that Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ.

def HasCardinalLT (X : Type u) (κ : Cardinal.{v}) :

The property that the cardinal of a type X : Type u is less than κ : Cardinal.{v}.

Equations
Instances For
    theorem HasCardinalLT.of_le {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {κ' : Cardinal.{v}} (hκ' : κ κ') :
    theorem HasCardinalLT.of_injective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : YX) (hf : Function.Injective f) :
    theorem HasCardinalLT.of_surjective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : XY) (hf : Function.Surjective f) :
    theorem hasCardinalLT_iff_of_equiv {X : Type u} {Y : Type u'} (e : X Y) (κ : Cardinal.{v}) :