Documentation

Mathlib.SetTheory.Cardinal.HasCardinalLT

The property of being of cardinality less than a cardinal #

Given X : Type u and κ : Cardinal.{v}, we introduce a predicate HasCardinalLT X κ expressing that Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ.

def HasCardinalLT (X : Type u) (κ : Cardinal.{v}) :

The property that the cardinal of a type X : Type u is less than κ : Cardinal.{v}.

Equations
Instances For
    theorem HasCardinalLT.of_le {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {κ' : Cardinal.{v}} (hκ' : κ κ') :
    theorem HasCardinalLT.of_injective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : YX) (hf : Function.Injective f) :
    theorem HasCardinalLT.of_surjective {X : Type u} {κ : Cardinal.{v}} (h : HasCardinalLT X κ) {Y : Type u'} (f : XY) (hf : Function.Surjective f) :
    theorem hasCardinalLT_iff_of_equiv {X : Type u} {Y : Type u'} (e : X Y) (κ : Cardinal.{v}) :
    theorem hasCardinalLT_subtype_max {X : Type u_1} {P₁ P₂ : XProp} {κ : Cardinal.{u_2}} ( : Cardinal.aleph0 κ) (h₁ : HasCardinalLT (Subtype P₁) κ) (h₂ : HasCardinalLT (Subtype P₂) κ) :
    HasCardinalLT (Subtype (P₁P₂)) κ
    theorem hasCardinalLT_union {X : Type u_1} {S₁ S₂ : Set X} {κ : Cardinal.{u_2}} ( : Cardinal.aleph0 κ) (h₁ : HasCardinalLT (↑S₁) κ) (h₂ : HasCardinalLT (↑S₂) κ) :
    HasCardinalLT (↑(S₁ S₂)) κ
    theorem hasCardinalLT_sigma' {ι : Type w} (α : ιType w) (κ : Cardinal.{w}) [Fact κ.IsRegular] ( : HasCardinalLT ι κ) ( : ∀ (i : ι), HasCardinalLT (α i) κ) :
    HasCardinalLT ((i : ι) × α i) κ

    The particular case of hasCardinatLT_sigma when all the inputs are in the same universe w. It is used to prove the general case.

    theorem hasCardinalLT_sigma {ι : Type u} (α : ιType v) (κ : Cardinal.{w}) [Fact κ.IsRegular] ( : HasCardinalLT ι κ) ( : ∀ (i : ι), HasCardinalLT (α i) κ) :
    HasCardinalLT ((i : ι) × α i) κ
    theorem hasCardinalLT_subtype_iSup {ι : Type u_1} {X : Type u_2} (P : ιXProp) {κ : Cardinal.{u_3}} [Fact κ.IsRegular] ( : HasCardinalLT ι κ) (hP : ∀ (i : ι), HasCardinalLT (Subtype (P i)) κ) :
    HasCardinalLT (Subtype (⨆ (i : ι), P i)) κ
    theorem hasCardinalLT_iUnion {ι : Type u_1} {X : Type u_2} (S : ιSet X) {κ : Cardinal.{u_3}} [Fact κ.IsRegular] ( : HasCardinalLT ι κ) (hS : ∀ (i : ι), HasCardinalLT (↑(S i)) κ) :
    HasCardinalLT (↑(⋃ (i : ι), S i)) κ
    theorem hasCardinalLT_prod' {T₁ T₂ : Type w} {κ : Cardinal.{w}} ( : Cardinal.aleph0 κ) (h₁ : HasCardinalLT T₁ κ) (h₂ : HasCardinalLT T₂ κ) :
    HasCardinalLT (T₁ × T₂) κ

    The particular case of hasCardinatLT_prod when all the inputs are in the same universe w. It is used to prove the general case.

    theorem hasCardinalLT_prod {T₁ : Type u} {T₂ : Type u'} {κ : Cardinal.{w}} ( : Cardinal.aleph0 κ) (h₁ : HasCardinalLT T₁ κ) (h₂ : HasCardinalLT T₂ κ) :
    HasCardinalLT (T₁ × T₂) κ

    For any w-small type X, there exists a regular cardinal κ : Cardinal.{w} such that HasCardinalLT X κ.

    theorem HasCardinalLT.exists_regular_cardinal_forall {ι : Type v} (X : ιType u) [Small.{w, v} ι] [∀ (i : ι), Small.{w, u} (X i)] :
    ∃ (κ : Cardinal.{w}), κ.IsRegular ∀ (i : ι), HasCardinalLT (X i) κ

    For any w-small family X : ι → Type u of w-small types, there exists a regular cardinal κ : Cardinal.{w} such that HasCardinalLT (X i) κ for all i : ι.