The property of being of cardinality less than a cardinal #
Given X : Type u
and κ : Cardinal.{v}
, we introduce a predicate
HasCardinalLT X κ
expressing that
Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ
.
The property that the cardinal of a type X : Type u
is less than κ : Cardinal.{v}
.
Equations
Instances For
theorem
HasCardinalLT.of_le
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{κ' : Cardinal.{v}}
(hκ' : κ ≤ κ')
:
HasCardinalLT X κ'
theorem
HasCardinalLT.of_injective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : Y → X)
(hf : Function.Injective f)
:
HasCardinalLT Y κ
theorem
HasCardinalLT.of_surjective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : X → Y)
(hf : Function.Surjective f)
:
HasCardinalLT Y κ
@[simp]
theorem
hasCardinalLT_sum_iff
(X : Type u)
(Y : Type u')
(κ : Cardinal.{w})
(hκ : Cardinal.aleph0 ≤ κ)
:
theorem
HasCardinalLT.exists_regular_cardinal
(X : Type u)
[Small.{w, u} X]
:
∃ (κ : Cardinal.{w}), κ.IsRegular ∧ HasCardinalLT X κ
For any w
-small type X
, there exists a regular cardinal κ : Cardinal.{w}
such that HasCardinalLT X κ
.
theorem
HasCardinalLT.exists_regular_cardinal_forall
{ι : Type v}
{X : ι → Type u}
[Small.{w, v} ι]
[∀ (i : ι), Small.{w, u} (X i)]
:
∃ (κ : Cardinal.{w}), κ.IsRegular ∧ ∀ (i : ι), HasCardinalLT (X i) κ
For any w
-small family X : ι → Type u
of w
-small types, there exists
a regular cardinal κ : Cardinal.{w}
such that HasCardinalLT (X i) κ
for all i : ι
.