The property of being of cardinality less than a cardinal #
Given X : Type u and κ : Cardinal.{v}, we introduce a predicate
HasCardinalLT X κ expressing that
Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ.
The property that the cardinal of a type X : Type u is less than κ : Cardinal.{v}.
Equations
Instances For
theorem
HasCardinalLT.of_le
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{κ' : Cardinal.{v}}
(hκ' : κ ≤ κ')
:
HasCardinalLT X κ'
theorem
HasCardinalLT.of_injective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : Y → X)
(hf : Function.Injective f)
:
HasCardinalLT Y κ
theorem
HasCardinalLT.of_surjective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : X → Y)
(hf : Function.Surjective f)
:
HasCardinalLT Y κ
@[simp]
theorem
hasCardinalLT_of_finite
(X : Type u_1)
[Finite X]
(κ : Cardinal.{u_2})
(hκ : Cardinal.aleph0 ≤ κ)
:
HasCardinalLT X κ
@[simp]
@[simp]
theorem
hasCardinalLT_sum_iff
(X : Type u)
(Y : Type u')
(κ : Cardinal.{w})
(hκ : Cardinal.aleph0 ≤ κ)
:
theorem
hasCardinalLT_subtype_max
{X : Type u_1}
{P₁ P₂ : X → Prop}
{κ : Cardinal.{u_2}}
(hκ : Cardinal.aleph0 ≤ κ)
(h₁ : HasCardinalLT (Subtype P₁) κ)
(h₂ : HasCardinalLT (Subtype P₂) κ)
:
HasCardinalLT (Subtype (P₁ ⊔ P₂)) κ
theorem
hasCardinalLT_union
{X : Type u_1}
{S₁ S₂ : Set X}
{κ : Cardinal.{u_2}}
(hκ : Cardinal.aleph0 ≤ κ)
(h₁ : HasCardinalLT (↑S₁) κ)
(h₂ : HasCardinalLT (↑S₂) κ)
:
HasCardinalLT (↑(S₁ ∪ S₂)) κ
theorem
hasCardinalLT_sigma'
{ι : Type w}
(α : ι → Type w)
(κ : Cardinal.{w})
[Fact κ.IsRegular]
(hι : HasCardinalLT ι κ)
(hα : ∀ (i : ι), HasCardinalLT (α i) κ)
:
HasCardinalLT ((i : ι) × α i) κ
The particular case of hasCardinatLT_sigma when all the inputs are in the
same universe w. It is used to prove the general case.
theorem
hasCardinalLT_sigma
{ι : Type u}
(α : ι → Type v)
(κ : Cardinal.{w})
[Fact κ.IsRegular]
(hι : HasCardinalLT ι κ)
(hα : ∀ (i : ι), HasCardinalLT (α i) κ)
:
HasCardinalLT ((i : ι) × α i) κ
theorem
hasCardinalLT_subtype_iSup
{ι : Type u_1}
{X : Type u_2}
(P : ι → X → Prop)
{κ : Cardinal.{u_3}}
[Fact κ.IsRegular]
(hι : HasCardinalLT ι κ)
(hP : ∀ (i : ι), HasCardinalLT (Subtype (P i)) κ)
:
HasCardinalLT (Subtype (⨆ (i : ι), P i)) κ
theorem
hasCardinalLT_iUnion
{ι : Type u_1}
{X : Type u_2}
(S : ι → Set X)
{κ : Cardinal.{u_3}}
[Fact κ.IsRegular]
(hι : HasCardinalLT ι κ)
(hS : ∀ (i : ι), HasCardinalLT (↑(S i)) κ)
:
HasCardinalLT (↑(⋃ (i : ι), S i)) κ
theorem
hasCardinalLT_prod'
{T₁ T₂ : Type w}
{κ : Cardinal.{w}}
(hκ : Cardinal.aleph0 ≤ κ)
(h₁ : HasCardinalLT T₁ κ)
(h₂ : HasCardinalLT T₂ κ)
:
HasCardinalLT (T₁ × T₂) κ
The particular case of hasCardinatLT_prod when all the inputs are in the
same universe w. It is used to prove the general case.
theorem
hasCardinalLT_prod
{T₁ : Type u}
{T₂ : Type u'}
{κ : Cardinal.{w}}
(hκ : Cardinal.aleph0 ≤ κ)
(h₁ : HasCardinalLT T₁ κ)
(h₂ : HasCardinalLT T₂ κ)
:
HasCardinalLT (T₁ × T₂) κ
theorem
HasCardinalLT.exists_regular_cardinal
(X : Type u)
[Small.{w, u} X]
:
∃ (κ : Cardinal.{w}), κ.IsRegular ∧ HasCardinalLT X κ
For any w-small type X, there exists a regular cardinal κ : Cardinal.{w}
such that HasCardinalLT X κ.
theorem
HasCardinalLT.exists_regular_cardinal_forall
{ι : Type v}
(X : ι → Type u)
[Small.{w, v} ι]
[∀ (i : ι), Small.{w, u} (X i)]
:
∃ (κ : Cardinal.{w}), κ.IsRegular ∧ ∀ (i : ι), HasCardinalLT (X i) κ
For any w-small family X : ι → Type u of w-small types, there exists
a regular cardinal κ : Cardinal.{w} such that HasCardinalLT (X i) κ for all i : ι.