The property of being of cardinality less than a cardinal #
Given X : Type u
and κ : Cardinal.{v}
, we introduce a predicate
HasCardinalLT X κ
expressing that
Cardinal.lift.{v} (Cardinal.mk X) < Cardinal.lift κ
.
The property that the cardinal of a type X : Type u
is less than κ : Cardinal.{v}
.
Equations
Instances For
theorem
hasCardinalLT_iff_cardinal_mk_lt
(X : Type u)
(κ : Cardinal.{u})
:
HasCardinalLT X κ ↔ Cardinal.mk X < κ
theorem
HasCardinalLT.of_le
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{κ' : Cardinal.{v}}
(hκ' : κ ≤ κ')
:
HasCardinalLT X κ'
theorem
HasCardinalLT.of_injective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : Y → X)
(hf : Function.Injective f)
:
HasCardinalLT Y κ
theorem
HasCardinalLT.of_surjective
{X : Type u}
{κ : Cardinal.{v}}
(h : HasCardinalLT X κ)
{Y : Type u'}
(f : X → Y)
(hf : Function.Surjective f)
:
HasCardinalLT Y κ
theorem
hasCardinalLT_iff_of_equiv
{X : Type u}
{Y : Type u'}
(e : X ≃ Y)
(κ : Cardinal.{v})
:
HasCardinalLT X κ ↔ HasCardinalLT Y κ
@[simp]