Documentation

Mathlib.CategoryTheory.Presentable.IsCardinalFiltered

κ-filtered category #

If κ is a regular cardinal, we introduce the notion of κ-filtered category J: it means that any functor A ⥤ J from a small category such that Arrow A is of cardinality < κ admits a cocone. This generalizes the notion of filtered category. Indeed, we obtain the equivalence IsCardinalFiltered J ℵ₀ ↔ IsFiltered J. The API is mostly parallel to that of filtered categories.

A preordered type J is a κ-filtered category (i.e. κ-directed set) if any subset of J of cardinality < κ has an upper bound.

References #

A category J is κ-filtered (for a regular cardinal κ) if any functor F : A ⥤ J from a category A such that HasCardinalLT (Arrow A) κ admits a cocone.

Instances

    A choice of cocone for a functor F : A ⥤ J such that HasCardinalLT (Arrow A) κ when J is a κ-filtered category, and Arrow A has cardinality < κ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def CategoryTheory.IsCardinalFiltered.max {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type u'} (S : KJ) (hS : HasCardinalLT K κ) :
      J

      If S : K → J is a family of objects of cardinality < κ in a κ-filtered category, this is a choice of objects in J which is the target of a map from any of the objects S k.

      Equations
      Instances For
        noncomputable def CategoryTheory.IsCardinalFiltered.toMax {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type u'} (S : KJ) (hS : HasCardinalLT K κ) (k : K) :
        S k max S hS

        If S : K → J is a family of objects of cardinality < κ in a κ-filtered category, this is a choice of map S k ⟶ max S hS for any k : K.

        Equations
        Instances For
          noncomputable def CategoryTheory.IsCardinalFiltered.coeq {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type v'} {j j' : J} (f : K → (j j')) (hK : HasCardinalLT K κ) :
          J

          Given a family of maps f : K → (j ⟶ j') in a κ-filtered category J, with HasCardinalLT K κ, this is an object of J where these morphisms shall be equalized.

          Equations
          Instances For
            noncomputable def CategoryTheory.IsCardinalFiltered.coeqHom {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type v'} {j j' : J} (f : K → (j j')) (hK : HasCardinalLT K κ) :
            j' coeq f hK

            Given a family of maps f : K → (j ⟶ j') in a κ-filtered category J, with HasCardinalLT K κ, and k : K, this is a choice of morphism j' ⟶ coeq f hK.

            Equations
            Instances For
              noncomputable def CategoryTheory.IsCardinalFiltered.toCoeq {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type v'} {j j' : J} (f : K → (j j')) (hK : HasCardinalLT K κ) :
              j coeq f hK

              Given a family of maps f : K → (j ⟶ j') in a κ-filtered category J, with HasCardinalLT K κ, this is a morphism j ⟶ coeq f hK which is equal to all compositions f k ≫ coeqHom f hK for k : K.

              Equations
              Instances For
                theorem CategoryTheory.IsCardinalFiltered.coeq_condition {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type v'} {j j' : J} (f : K → (j j')) (hK : HasCardinalLT K κ) (k : K) :
                theorem CategoryTheory.IsCardinalFiltered.coeq_condition_assoc {J : Type u} [Category.{v, u} J] {κ : Cardinal.{w}} [ : Fact κ.IsRegular] [IsCardinalFiltered J κ] {K : Type v'} {j j' : J} (f : K → (j j')) (hK : HasCardinalLT K κ) (k : K) {Z : J} (h : coeq f hK Z) :
                theorem CategoryTheory.isCardinalFiltered_preorder (J : Type w) [Preorder J] (κ : Cardinal.{w}) [Fact κ.IsRegular] (h : ∀ ⦃K : Type w⦄ (s : KJ), Cardinal.mk K < κ∃ (j : J), ∀ (k : K), s k j) :