A complete abelian category with enough injectives and a separator has an injective coseparator #
Future work #
- Once we know that Grothendieck categories have enough injectives, we can use this to conclude that Grothendieck categories have an injective coseparator.
References #
theorem
CategoryTheory.Abelian.has_injective_coseparator
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Limits.HasLimits C]
[EnoughInjectives C]
(G : C)
(hG : IsSeparator G)
:
∃ (G : C), Injective G ∧ IsCoseparator G
theorem
CategoryTheory.Abelian.has_projective_separator
{C : Type u}
[Category.{v, u} C]
[Abelian C]
[Limits.HasColimits C]
[EnoughProjectives C]
(G : C)
(hG : IsCoseparator G)
:
∃ (G : C), Projective G ∧ IsSeparator G