Documentation

Mathlib.CategoryTheory.Abelian.Opposite

The opposite of an abelian category is abelian. #

The kernel of f.op is the opposite of cokernel f.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.kernelOpUnop_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :
    (kernelOpUnop f).hom = (Limits.kernel.lift f.op (Limits.cokernel.π f).op ).unop
    @[simp]
    theorem CategoryTheory.kernelOpUnop_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :

    The cokernel of f.op is the opposite of kernel f.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.cokernelOpUnop_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :
      (cokernelOpUnop f).inv = (Limits.cokernel.desc f.op (Limits.kernel.ι f).op ).unop
      @[simp]
      theorem CategoryTheory.cokernelOpUnop_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :

      The kernel of g.unop is the opposite of cokernel g.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.kernelUnopOp_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :
        (kernelUnopOp g).hom = (Limits.kernel.lift g.unop (Limits.cokernel.π g).unop ).op
        @[simp]
        theorem CategoryTheory.kernelUnopOp_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :

        The cokernel of g.unop is the opposite of kernel g.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.cokernelUnopOp_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :
          (cokernelUnopOp g).inv = (Limits.cokernel.desc g.unop (Limits.kernel.ι g).unop ).op
          @[simp]

          The kernel of f.op is the opposite of cokernel f.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.kernelOpOp_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :
            @[simp]
            theorem CategoryTheory.kernelOpOp_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :
            (kernelOpOp f).hom = (Limits.cokernel.desc f (Limits.kernel.ι f.op).unop ).op

            The cokernel of f.op is the opposite of kernel f.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.cokernelOpOp_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :
              (cokernelOpOp f).inv = (Limits.kernel.lift f (Limits.cokernel.π f.op).unop ).op
              @[simp]
              theorem CategoryTheory.cokernelOpOp_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {X Y : C} (f : X Y) :

              The kernel of g.unop is the opposite of cokernel g.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.kernelUnopUnop_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :
                @[simp]
                theorem CategoryTheory.kernelUnopUnop_hom {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :
                (kernelUnopUnop g).hom = (Limits.cokernel.desc g (Limits.kernel.ι g.unop).op ).unop

                The cokernel of g.unop is the opposite of kernel g.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.cokernelUnopUnop_inv {C : Type u_1} [Category.{u_2, u_1} C] [Abelian C] {A B : Cᵒᵖ} (g : A B) :
                  (cokernelUnopUnop g).inv = (Limits.kernel.lift g (Limits.cokernel.π g.unop).op ).unop
                  @[simp]

                  The opposite of the image of g.unop is the image of g.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The opposite of the image of f is the image of f.op.

                    Equations
                    Instances For

                      The image of f.op is the opposite of the image of f.

                      Equations
                      Instances For

                        The image of g is the opposite of the image of g.unop.

                        Equations
                        Instances For