If C
is preadditive, Cᵒᵖ
has a natural preadditive structure. #
instance
CategoryTheory.instPreadditiveOpposite
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
:
Equations
- CategoryTheory.instPreadditiveOpposite C = { homGroup := fun (X Y : Cᵒᵖ) => (CategoryTheory.opEquiv X Y).addCommGroup, add_comp := ⋯, comp_add := ⋯ }
instance
CategoryTheory.moduleEndLeft
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X : Cᵒᵖ}
{Y : C}
:
Module (CategoryTheory.End X) (Opposite.unop X ⟶ Y)
Equations
@[simp]
theorem
CategoryTheory.unop_add
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : Cᵒᵖ}
(f g : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.unop_zsmul
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : Cᵒᵖ}
(k : ℤ)
(f : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.unop_neg
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : Cᵒᵖ}
(f : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.op_add
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : C}
(f g : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.op_zsmul
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : C}
(k : ℤ)
(f : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.op_neg
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{X Y : C}
(f : X ⟶ Y)
:
def
CategoryTheory.unopHom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : Cᵒᵖ)
:
(X ⟶ Y) →+ (Opposite.unop Y ⟶ Opposite.unop X)
unop
induces morphisms of monoids on hom groups of a preadditive category
Equations
- CategoryTheory.unopHom X Y = AddMonoidHom.mk' (fun (f : X ⟶ Y) => f.unop) ⋯
Instances For
@[simp]
theorem
CategoryTheory.unopHom_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : Cᵒᵖ)
(f : X ⟶ Y)
:
(CategoryTheory.unopHom X Y) f = f.unop
@[simp]
theorem
CategoryTheory.unop_sum
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : Cᵒᵖ)
{ι : Type u_2}
(s : Finset ι)
(f : ι → (X ⟶ Y))
:
(s.sum f).unop = ∑ i ∈ s, (f i).unop
def
CategoryTheory.opHom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : C)
:
(X ⟶ Y) →+ (Opposite.op Y ⟶ Opposite.op X)
op
induces morphisms of monoids on hom groups of a preadditive category
Equations
- CategoryTheory.opHom X Y = AddMonoidHom.mk' (fun (f : X ⟶ Y) => f.op) ⋯
Instances For
@[simp]
theorem
CategoryTheory.opHom_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : C)
(f : X ⟶ Y)
:
(CategoryTheory.opHom X Y) f = f.op
@[simp]
theorem
CategoryTheory.op_sum
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
(X Y : C)
{ι : Type u_2}
(s : Finset ι)
(f : ι → (X ⟶ Y))
:
(s.sum f).op = ∑ i ∈ s, (f i).op
instance
CategoryTheory.Functor.op_additive
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor C D)
[F.Additive]
:
F.op.Additive
instance
CategoryTheory.Functor.rightOp_additive
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor Cᵒᵖ D)
[F.Additive]
:
F.rightOp.Additive
instance
CategoryTheory.Functor.leftOp_additive
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor C Dᵒᵖ)
[F.Additive]
:
F.leftOp.Additive
instance
CategoryTheory.Functor.unop_additive
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Preadditive C]
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
(F : CategoryTheory.Functor Cᵒᵖ Dᵒᵖ)
[F.Additive]
:
F.unop.Additive